

Time for Testing
at an intermediate Dutch SME

For confidentiality reasons, various names have been altered and some sections have been removed

Committee University of Twente
Dr. Roland Müller
Dr. Chintan Amrit

Topicus
Martin Krans
Wouter de Jong

Author Yoni Meijberg, Bsc.
Graduated 13-01-2009
Bachelor program
Industrial Engineering and Management,
University of Twente

Thesis Deventer, 02-01-2008, private version 1.00

M
an

ag
em

en
t

Su
m

m
ar

y

2

MANAGEMENT SUMMARY
Recent development projects as well as their worried project managers show an urge for improving

software quality by proper testing. High post-release defect levels, uncertain software quality and

lack of testing methodology underlie this urge.

A case study was performed on two of the six SME business units to first assess current testing

workings and thereafter to identify a desired future testing state. The various applied research

methods – literature studies, semi-open interviews, and a survey – together provide a multi-

perspective overview of SME’ testing methodology.

The research shows testing at SME to reside in a troubling state, probably in a worst-case scenario.

This is because various aspects of testing are considered weak: responsibilities are too informal,

there is a lack of testing knowledge amongst employees, testing holds a low priority, there’s a lack of

testing resources, quality management lacks objectivism and finally customers are offered little

guidance in proper testing. Furthermore, all types of testing – except for acceptance testing – are

hardly applied and testing is performed without a methodology.

To improve these weaknesses, three best-practices have been identified out of structured literature

studies on agile testing methods. These are: Test-Driven Development, which holds a new paradigm

on testing that shortens and increases amounts of test cycles; Continuous Integrated Testing, forcing

regression and integration testing via automated test runs; and finally the use of Metrics to provide

real-time insights in software quality and performed tests, enabling planning, steering and control.

Together these practices will solve current testing methodology issues, and improve software quality

significantly by reducing defect injection rates and by finding and fixing defects closer to their origin.

P
re

fa
ce

3

PREFACE
After a year this report is finally done. A lot has happened during the last months. Discovering the

researcher in me next to the always oppressing consultant, speaking with and to enthusiastic minds,

endlessly reframing the research, rewriting the report again from the bottom up, taking on several

challenging – but time costly – side jobs at SME and a tragically ended personal relationship. All this

has come to an exceeded normally required time for an assignment like this, but the result is there: a

report that is meant to shock at first while disclosing valuable aid in building a brighter (testing)

future later on.

I want to pay my thanks to all interviewees and survey respondents for supplying me with their

opinions and lending me a helping hand from time to time.

Major thanks comes to Martin Krans and Wouter de Jong at SME, and Ronald Müller and Chintan

Amrit at the University of Twente for making this research to what it is now and by helping me grow

on both a personal and professional level.

Ta
b

le
 o

f
C

o
n

te
n

ts

4

TABLE OF CONTENTS
Management Summary .. 2

Preface .. 3

Table of Contents ... 4

Contents .. 7

1 Introduction .. 8

1.1 SME, an intermediate-sized SME .. 8

1.2 Case description .. 8

1.2.1 Motive: get testing up to speed .. 8

1.2.2 Sample subset Energy & Core .. 9

1.2.3 Research focus ... 9

1.3 Problem identification ... 10

1.3.1 Preliminary Issues .. 10

1.3.2 Main question: improve software quality by proper testing 11

1.3.3 Sub questions: current and target situation .. 11

2 Methodology .. 13

2.1 Research phasing ... 13

2.2 Preliminary literature review .. 14

2.3 Semi-open interviews .. 15

2.3.1 Interviews side-product: sample test reports ... 16

2.4 Survey .. 16

2.4.1 Format realization cycles ... 16

2.4.2 Questioning and scales .. 17

2.4.3 Result analysis method and classification ... 18

2.4.4 Sampling, response rate and sample validity .. 19

2.5 Structured literature study .. 21

2.5.1 Agile methodologies study .. 22

2.5.2 Results agile methodologies study: the path to TDD .. 23

2.5.2.1 Nine agile methods ... 23

2.5.2.2 Iterative testing ... 25

2.5.2.3 Empirically only XP and SCRUM are covered .. 25

2.5.3 Metrics and CIT to guide project management ... 26

3 Current Situation ... 28

3.1 Overall picture: testing in trouble ... 29

3.1.1 Responsibilities: too informal .. 30

3.1.2 Inadequate knowledge / competence ... 31

3.1.3 Low priority .. 31

3.1.4 Partial lack of resources ... 32

3.1.5 Quality management bears subjectivism .. 32

3.1.6 Limited customers guidance .. 32

Ta
b

le
 o

f
C

o
n

te
n

ts

5

3.2 Types of testing ... 32

3.3 No overall methodology, limited TMAP NEXT application .. 33

3.4 Realization current test process .. 33

4 Current Performance ... 34

4.1 Testing performance: ordinal ‘Unsure’ at best ... 34

4.2 Low execution levels throughout test types ... 35

4.2.1 Test types ... 36

4.2.2 Condensed test and principle usage .. 37

4.2.3 Complete test and principle usage .. 37

4.2.3.1 Test use far too limited for perceived relevance .. 38

4.2.3.2 Regression? What regression? ... 40

4.2.3.3 Regression lacks behind test frequencies ... 42

4.2.3.4 Automation zero to none accompanied by relevance neutrality 43

4.2.3.5 Developer knowledge level lacking, customers‘ level varies 45

4.2.3.6 Test resources important yet unavailable .. 46

4.2.3.7 Various statements ... 48

4.2.4 Qualitative additions of overall testing process .. 52

5 Best Practices .. 53

5.1 Testing paradigm shift: XP’s Test-Driven Development .. 53

5.1.1 XP TDD in short .. 53

5.1.2 XP testing: various benefits ... 56

5.2 Beyond tools: Continuous Integrated Testing ... 58

5.2.1 Continuous Integration explained ... 58

5.2.2 The CIT approach ... 59

5.2.3 A variety of benefits from CIT .. 60

5.2.4 Remarks on automated testing ... 62

5.3 Metrics: A new set of performance indicators .. 63

5.3.1 Measurements of test execution levels .. 64

5.3.1.1 Code Coverage .. 64

5.3.1.2 Test Progress Curve (Planned, Attempted, Actual) .. 65

5.3.2 Indirect measurements of code quality through defect analysis 66

5.3.2.1 Testing Defect Arrivals over Time ... 66

5.3.2.2 Testing Defect Backlog over Time ... 70

5.3.3 Overall performance of testing ... 71

5.3.3.1 Defect Detection Percentage .. 71

5.3.4 Special case: When to stop testing? .. 72

5.4 Setting a testing atmosphere .. 73

5.4.1 Customers: high(er) involvement .. 73

5.4.2 Developers: diffuse knowledge ... 73

Ta
b

le
 o

f
C

o
n

te
n

ts

6

6 Discussion ... 74

6.1 Conclusion: testing severely underexposed .. 74

6.2 Recommendations .. 74

6.2.1 Best-practice adoption, not which but in what order ... 75

6.2.2 Stepwise improvement via three consecutive best-practices 76

6.3 Issues and main question revisited: improvements throughout .. 76

6.3.1 All issues covered .. 77

6.3.2 Software quality sure to improve .. 78

6.4 Limitations and future work .. 79

6.4.1 Limitations ... 79

6.4.2 Future work ... 80

References ... 82

Appendices .. 86

A Semi-open interview format ... 86

B Survey format .. 87

C
o

n
te

n
ts

7

CONTENTS
This report is divided into six chapters. Chapter 1 introduces SME and the business case underlying

this research. Chapter 2 enlists the research phasing and three applied research methods. Chapter 3

is the first chapter to discuss results; here insights into the troubled current situation of the test

process are provided. Chapter 4 elaborates on current test performance by showing limited use of

various test types and underlying agile principles. Chapter 5 shows a glimpse of the future, by listing

three identified agile best-practices. Chapter 6 thereafter wraps up research results, by showing an

urgent need to improve. This is supplemented by reflecting on what the best-practices are likely to

improve when implemented. It concludes with some exit arguments as well as future

research possibilities.

1
 In

tr
o

d
u

ct
io

n

8

1 INTRODUCTION
SME, a rapid growing software development business, is continuously seeking to improve its

application development methodology. In the recent past a few projects have been coping with

defects surfacing post release time, causing developers to rush bug-fixes in order to keep customers

satisfied. But there should be a way to prevent this late defect surfacing. This is done via testing, a

development activity known to be lagging at SME. This report answers questions about the current

situation of SME’ testing and delivers the newest agile testing best-practices to improve the

detection and removal of defects. After all: “Your Software quality is only as good as the quality of

your testing efforts” (Scott Ambler)

1.1 SME, an intermediate-sized SME
<<REMOVED FOR CONFIDENTIALITY REASONS>>

1.2 Case description
This section holds three underlying sections that together describe the business case. First the

motive for this research is described in section 1.2.1: testing activities do not match up in quantity or

quality when compared to other development activities. Secondly in section 1.2.2 the case sample is

discussed: the subset of two SME businesses Energy and Hub was used. The third and final section

(1.2.3) discusses the research focus.

1.2.1 Motive: get testing up to speed

One of the SME businesses (SME = Powered By SME, the holding company), the ‘hub’ SME –from

which the remaining other businesses are subsidiaries – wants to improve the methods of testing as

a part of their application development process. This is due to various reasons.

SME uses an agile approach for application development, by using small independent developer

teams that work with short 2-to-4-weekly release cycles (except for the first cycle which usually takes

months to build). While this general agile approach works well for SME, testing procedures aren’t

integrated into this approach yet. A lack of a structure in deciding which tests to perform and when is

missed by developers and project management. They also want to be able to test earlier in the

development process, so that errors are easier to fix because of earlier discovery. A final remark

about the role of testing has to do with the traditional underexposure of testing when looking at the

entire application development process.

1
 In

tr
o

d
u

ct
io

n

9

While some expertise in testing is available – developers of course test their applications in various

ways (often with help of end users) before release to customer – this knowledge isn’t indexed and/or

bundled into a commonly known and applied testing approach. One exception hereto forms the wide

application of Use Cases as testing aid, where analysts and designers structurally create functional

tests for acceptance testing.

During a short office tour developers expressed a legitimate interest in improving availability of

testing methods and tools and have ideas and clear opinions on this subject. Especially the possibility

of testing earlier received a lot of attention.

All of this has lead to the demand for the development of an agile testing framework which needs to

fit the SME’ general agile software development method.

1.2.2 Sample subset Energy & Hub

This research targets two SME businesses, ‘Hub’ and ‘Energy’. These two businesses are treated as

one case in this research. This is deemed possible because (1) both businesses currently operate in

the same – financial – industry, (2) ‘Energy’ just recently (January 2007) split off from ‘Hub’, and (3)

work processes are highly alike.

The other two SME businesses ‘Transport’ and ‘Government’ operate in different industries, develop

other types of software, split off earlier and have more differentiated work processes (probably due

to the same former mentioned factors). The less commonalities result in the conclusion that these

businesses won’t be targeted in this research. However, they will be cross-examined for best-

practices to prevent reinventing the wheel.

Next to the above described inter-SME similarities, intra-Hub and intra-Energy development projects

are highly alike, for they apply a common development approach. This proves that one fitting testing

framework can be developed, fit for use at both businesses.

1.2.3 Research focus

During the assignment formulation some limiting conditions for this research were agreed on:

 Test processes will/can only follow lightweight approaches, matching current SME software

development process agility.

 Only the testing phase(s) of the software development process will be included in this

research.

 The application development process will be approached from a development angle geared
towards testing, thus not from a total software quality approach.

 The level of research lies at an application level.

 The focus of this research isn’t aimed at delivering an exhaustive list of tools and methods to
improve application development, but more at improving and aiding the development
processes.

 Test case development and test planning is excluded from this research, for another SME
employee is highly involved herein and is making good progress.

1
 In

tr
o

d
u

ct
io

n

10

1.3 Problem identification
This section holds three underlying sections which problems and questions shaped this research.

Section 1.3.1 elaborates upon the variety of issues of software quality and testing activities at SME.

Section 1.3.2 covers the main question of this research, how to raise software quality by proper

testing. Section 1.3.3 divides this question into manageable smaller parts.

1.3.1 Preliminary Issues

From the preliminary sessions with project managers and research coaches Wouter de Jong and

Martin Krans current troubles of testing were distilled:

 Uncertainty about software quality. Roll-out of applications at customers net few bugs

(exceptions left amid) and customers are happy with the functionality of the software, but at

the same time developers fear possible latent high-impact bugs.

 Software quality can’t be proven. Customers often require proven software quality. Currently

there are no objective metrics in place, so true statements on software quality cannot be

provided. Another effect hereof is that project managers remain oblivious about software

quality and thus cannot adequately steer developer effort upon maintaining/raising it.

 Software defects (or: bugs) are uncovered too late in the development process. Due to testing

being performed as an (almost) separate phase at the end of the development process, bugs

aren’t uncovered timely and thus require disproportionate amounts of effort to fix compared

to timely uncovering and solving. (Kan 2003)

 Testing activities cripple under new-feature pressure at the end of development / when

nearing a release. Customers and project managers structurally choose for new features over

tested earlier features when the deadline of a release approaches. This occurs practically

every release, thus seriously suppressing testing effort.

 Unknown testing effort. There is no clear overview on effort awarded to testing. Project

managers have no other option than to turn to their gut feeling on what is/isn’t tested and to

what amounts. That’s because project managers regard test efforts as developer’s own

responsibility and thus they have no obligation to report what was tested and with what

results. Without objective knowledge on testing efforts it is also practically impossible to

steer developers on test effort.

 Lack of vision on testing. There is limited organizational knowledge on how to perform

testing; some knowledge is available but remains still at a personal level. This results in the

lack of a universally applicable way (or vision) to perform testing.

 Lack of testing responsibility, while developers are individually responsible for their work,

there are no incentives in place to steer them to deliver tested software. Time has proven

that this open responsibility approach nets inadequate testing attention.

1
 In

tr
o

d
u

ct
io

n

11

1.3.2 Main question: improve software quality by proper testing

All the issues above lead towards the formulation of the main question:

‘How can the testing process be improved to raise the software quality?’

Testing process The part of the development process concerned with testing (not per se as a
separate phase). This is typically comprised of requirements analysis, planning,
execution, reporting, and retesting.

Software quality Delivering software with fewer defects.1

1.3.3 Sub questions: current and target situation

The form of the main question targeting improvement over current practices asks for a division in an

As Is and To Be situation (current and target). For these two situations separate sub questions have

been defined. These are listed in the next paragraph. For easy reference each question refers to the

section where it’s answered. The colored columns correspond with Figure 2-1 of section 2.1 where

the phasing and methodology behind this research is depicted. The three research phases have all

been appointed a different color in the figure. This coloring helps the reader to comprehend what

research methods where applied at what research phase.

1
 This narrowest sense of product quality is commonly recognized as lack of ‘bugs’ in the product. It is also the

most basic meaning of conformance to requirements, because if the software contains too many functional

defects the basic requirement of providing the desired function isn’t met.

This product quality definition is often expressed in two ways: defect rate (e.g. number of defects per million

lines of source code) and reliability (e.g. number of failures per n hours of operation). (Kan 2003)

The third common component of quality is customer satisfaction, in this research however this is considered

beyond material, for this type of quality depends on much more than what can be touched by improving testing.

This limited definition of software quality is necessary for this research limits itself to testing. To reach higher

software quality in a broader sense would require attention to all phases of software development and include a

customer focus, which isn’t possible in this study’s timeframe.

1
 In

tr
o

d
u

ct
io

n

12

The general methodology applied to attain answers to these questions is described in Chapter 2.

Detailed methodology descriptions are included as separate sections.

Questioning Corresponding
Section(s)

Color
Coordi-
nation

Current Situation (As Is)
Test process descriptive

 What comprises the current test process? 3

o What are the general characteristics? 3.1
o What types of testing are applied? 3.2
o What test methodology is currently used? 3.3
o How was the current use of test methods realized? 3.4

Test process performance

 What is the level of performance of the current test process? 4

o Which indicators are used to measure performance? 4.12
o To what level are tests executed? 4.2
o What is the current performance on the indicators? 4.1

Target Situation (To Be)

 What best practices should be adopted to counter weaknesses
and/or improve strengths of the test process(es)?

5

o What best practices are available? 5.1 - 5.4
o Which one(s) should be adopted? 6.2.1

Table 1-1 Research questions and their references

2
 There weren’t any indicators in use and so an ordinal scale was used to express performance. The research

question thus couldn’t be formally answered, but an attempt was made to provide some sort of measurement.

2
 M

et
h

o
d

o
lo

gy

13

2 METHODOLOGY
This chapter covers the applied research methodology. Within this research several research

methods have been applied. Their relations to research phasing and each other are described in

section 2.1. After having clarified the application of a variety of research methods, their application is

described in detail in sections 2.2 – 2.5. Results have been separated from methodology descriptions

except at the preliminary literature review, for it isn’t directly linked to research questioning and thus

otherwise its results wouldn’t be explicitly shown. For completeness purposes its results are thus

listed along with the methodology.

2.1 Research phasing
This research holds three research phases, corresponding with question categories as defined in

section 1.3.3. Figure 2-1 shows these phases as well as their relations with the variety of applied

research methods.

Figure 2-1 Research Methodology in phasing, activities and research methods

Each research phase is marked by a different color. Test process descriptives in red, test process

performance in yellow and target situation in blue. Within every category their respective underlying

research questions are depicted by white squares. In the centre of the figure the four applied

research methods of this research are visible, depicted by diamond shapes. From these research

methods lines are drawn that mark the usage of the four methods to solve individual questions. For

instance the ‘Structured literature study’ research method answers questions ‘Available Best

Practices’ and ‘Adoption’.

N.B. During the entire research observations were applied when needed, as well as quick office ask-

arounds to fill in small details. These aren’t discussed as research methods, for they only

served to supplement in providing small details.

2
 M

et
h

o
d

o
lo

gy

14

2.2 Preliminary literature review
This research method was applied to get a feel in the fields of software testing and agile

development. With the insights originating from retrieved journal papers, a first step towards the

shaping of this entire research was set. The insights served as background information, allowing the

researcher to shape a framework for asking the right questions in the following semi-open

interviews.

The literature review was performed in a structured way. First a set of search key words was formed

to guide the search. Applied key words were: “agile development”, “agile testing”,

The search was restricted to online accessible papers within access rights of University of Twente

library. This omits books and practitioners reports. This restriction was applied due to the exploratory

character central in this preliminary literature study.

For speed and scale manageability reasoning, only one journal search engine was applied, namely

Web Of Science3 (WoS). This search engine holds most of the Computer Science (CS) top journals.

(Schwartz and Russo 2004) This argument combined with advanced search options and ease of use,

this engine was selected for sole usage. Other candidates where Scopus4 and IngentaConnect5 that

also reach a large portion of top CS journals. (Schwartz and Russo 2004)

The search was limited to papers no older than 10 years of age and originating from resources

categorized by WoS as ‘computer science’ and as being a ‘review paper’. Herein lay two assumptions:

(1) no highly valued papers originate from outside of CS field, which is reasonable because software

testing is a specialist subject within software development. (2) Review papers provide a fast yet well

grounded starting point to streams of research on the subject.

This resulted in a few papers that were too abstract to be of proper use. So a decision was made to

drop the limitation of result type and thus accept regular papers as results as well. The new search

resulted just under 300 papers. A selection mechanism was then needed, for analyzing 300 papers is

too much for a preliminary study. For selection, the results were sorted on amount of references to

guarantee stateliness by the academic field, where after a manual check for subject compatibility

was performed by scanning paper abstracts. This resulted in a manageable set of papers that

provided a quick insight into the aforementioned subjects software testing and agile development.

3
 Accessible at www.isiknowledge.com

4
 Accessible at www.scopus.org

5
 Accessible at www.ingentaconnect.com

http://www.isiknowledge.com/
http://www.scopus.org/
http://www.ingentaconnect.com/

2
 M

et
h

o
d

o
lo

gy

15

A selection of insights gained:

 Agile development is a new software engineering paradigm with a new set of principles
aiming for customer collaboration, responding to continuous change, and valuing individuals.
These principles underlie every method of agile development and is agreed upon and opened
to the world in a Agile Manifesto by respective method authors. (Fowler and Highsmith 2001)

 Agile testing focuses on early and frequent testing, with high amounts of tests being
developed upfront or in parallel with coding efforts. This contradicts traditional development
methodologies that perform tests as a separate phase at the end of development, often
leading to integration issues.

 Agile testing requires high levels of automation and leans on regression testing.

 Agile testing is a relatively new practice6. Empirical evidence is limited, although they are to
the least mildly positive7. (Janzen and Saiedian 2005)

2.3 Semi-open interviews
The second used research method semi-open interviewing. Goal was to get qualitative information

about the current testing process arrangements and its performance. Another goal was to retrieve

input on the format for the following survey. The preceding preliminary literature study provided the

researcher with a means to talk in common testing concepts and jargon.

The interviews were held over all four (at the current time) business units, interviewing four people

per business unit consisting of two project managers and two developers. This totaled 16

interviewees. The interviewees were handpicked by the two SME counselors supervising this

research. The targets were selected as being eminent (highly valued by colleagues and well-formed

opinions) and knowledgeable about SME’s development (and testing) methodology. This aids in the

shaping of a realistic reflection of current test process workings, required in this research.

Interviews were spread evenly over business units and personnel functions to have a diverse sample

of BPT personnel, which improves research validity. The business unit division also served to see

whether or not results can be generalized over the entire SME, while the split in personnel functions

served to have input from both sides of development.

To improve answer value of interviewees a semi-open question format was crafted. The semi-open

nature inspires interviewees to speak freely and explain by example. Exactly what is needed as

qualitative information about the current testing process. The used format is listed as Appendix A.

Individual interviews won’t be published in this report, for results were used primarily as anecdotal

input for creating survey statement questions and to formulate expectancies towards survey

question results. They also served to answer some how and why questions, but this doesn’t provide a

reason to publish individually either. Where needed in this report references are made towards

interview results. Second reason for not publishing separate interviews is because of agreed

confidentiality. A way to mitigate this confidentiality – publishing restriction is to anonymize data.

This however isn’t an option, for even anonymized interviews are easily traced back to individuals

within the small amount of handpicked interviewees.

6
 Agile methodologies originate in 1995 or later. (For additional information see Figure 2-4)

7
 Janzen and Saiedian (2005) show results of empirical studies for both industry and academic settings on agile

practices to have mildly positive outcomes.

2
 M

et
h

o
d

o
lo

gy

16

What is published as direct interview results however is comparison Table 4-2 in section 4.2.2, which

compares interview to survey results. More results are written in the form of statements and their

respective expectancies (see: section 4.2.3.7) that mostly originate from interview responses.

Final comment on interview yield is the byproduct it delivered. During several interviews references
were made to test reports. The researcher was told that these reports form a proper reflection of
test process setup. This was deemed as enough reason to apprehend a set of these reports for
analysis. Results of this short analysis are depicted in the following section.

2.3.1 Interviews side-product: sample test reports

During several interviews references were made towards test reports. Every development project at

SME reports to their customer what was tested and in what matter in periodical test reports.

Samples were asked and retrieved. A shortlist of four regarded as ‘outstanding’ documents were

analyzed for test type application and general test process description. Conclusions aren’t covered

here; references to results are made at section 3.3. The sample test reports aren’t included in this

report, for they are available only in Dutch. Translation would be a time-consuming activity of little

value.

2.4 Survey
The held survey served as quantitative backup of interview conclusions and premises. Its format also

included some questions raised in the preliminary study. Questions target use of the variety in test

types and agile principles as identified during the preliminary study.

Four underlying sections cover methodological attention points the researcher took into account to

arrive at a proper survey and guided result analysis. Section 2.4.1 covers the survey format

realization cycles, showing the transition from a first draft to a final full-scale online survey. Section

2.4.2 provides insights in applied questioning and scales, which are Likert scales were applicable and

ordered-categorical or uniformly distributed elsewhere. Section 2.4.3 shows how survey results were

analyzed for tendency. Section 2.4.4 concludes the description of the survey research methodology

by listing the extensive steps that were taken to ensure high response rates and increase sample

validity, as well as the defense for selecting a data subset.

2.4.1 Format realization cycles

Two review cycles passed to retain the final (online) survey format. These cycles consisted of the

researcher drafting a survey format (first draft originating from previous research method results),

where after a handpicked expert panel of developers and analysts commented upon its ‘fit for use’.

This fitness being: questions are clear and comprehensible, answer scales are easy to perceive and

logical, there are comments and descriptions where needed, and the question order follows

naturally.

After these review cycles passed, the final format was drafted. It’s available in this report as

Appendix B. Visible there is the enclosure of definitions where use of agile concepts where asked.

This guarantees that respondents answer exactly to what is asked, instead of to their perception of

the asked concepts. Another method of improving response quality was the enclosure of a comment

box at every question, where respondents were free to respond anything they wished to add to their

answering of the questions. Looking back upon comment box use, respondents used this mostly to

enrich their answers with qualitative information. In a few cases however it was used to state that

one couldn’t answer a certain question, thus improving response quality as argued beforehand.

2
 M

et
h

o
d

o
lo

gy

17

A notable miss in the applied format was the absence of multiple questions targeting the same

construct. At this research single questions for constructs were deemed to hold enough validity,

considering results were only to be analyzed as exploratory data. The expert reviews are thus

regarded as sufficient to guarantee construct validity.

2.4.2 Questioning and scales

As visible in the final survey format included as Appendix B, questions are uniformly formatted

(examples: ‘To what extent…’, ‘How important…’) and dictated in open form. This helps respondents

to answer both easily and unbiased. Questions were asked in a categorical order that was fixed for

every respondent.

Because questions are mostly described in a statement form and the respondent is asked to evaluate

agreement level, most answer scales are five-point Likert scales. There were three question types

that deviate from this scaling scheme: (1) principle or test type application interval questions, (2)

automation level questions, and (3) numeric grading questions.

For the first type an increasing time-scale interval was used (see: questions 5 and 7) using common

and fixed time indicators (like minutes) supplemented by one non-fixed category: release. This was

included because during the semi-open interviews a lot of activities were mentioned to be

performed ‘per release’, but with varying time intervals for a ‘release’ between respondents. To

counter this variation a survey question was included to determine the exact duration of a ‘release’.

Below the results hereof are discussed:

Figure 2-2 Release period

When observing the release periods mentioned by respondents, periods of 4 and 8 weeks dominate

and thus are accepted as the two possible variations of release periods. Several observations prove

that it’s common to have release cycles of 4 (most often) or 8 weeks (less often), superseded by a

primary release that takes a somewhat larger period to complete. This forms an explanation for the 5

and 6 months sometimes returned. Respondents were asked for the average release period, taking

the longer primary period into account could come down to 5 or 6 weeks average. Thus 4 and 8

weeks will be used as release periods. This has implications for results on further questions where

answers could be ranked (amongst other answers) as ‘per month’ or ‘per release’. When using 4

weeks as a release period, month and release would be equal. For 8 weeks this would imply a

doubled cycle. This split will be dealt with at the concerning survey questions in greater detail.

2
 M

et
h

o
d

o
lo

gy

18

The second deviation is applied only at question 9. Here the automation level is asked, which is

expressed in five fixed intervals of 20%. Using this fixed interval percentage scaling provides more

insights than the other available option: applying an ordinal and increasing scale, ranging from ‘no’ to

‘full’ automation via ‘little‘ and ‘much’.

Third and final deviation is found at two places, questions 3, 4 and 16. Here numeric values are asked

in the form of numbers. This scale holds the most value for it can provide detailed distribution figures

for analysis.

2.4.3 Result analysis method and classification

To draw conclusions out of result data, a method of analysis is required. For this survey this was

found in tendency analysis. This is possible for the question scales are in ordered-categorical form –

a minimum demand for tendency analysis – or even better in the form of exact numbers resulting at

some questions.

Deeper analysis through the use of statistics is regarded beyond consideration by the researcher,

because of the limited number of respondents undermining usefulness and the required additional

computations that isn’t a necessity in this research of exploratory nature.

For the analysis of statements results, the tendency analysis wasn’t satisfactory. A further

assessment of data was required. This called for more advanced result classification, which steps are

described in detail next:

All statement results follow a 5-point Likert scale, ranging from Completely Disagree to Completely

Agree. First this scale was reduced to a three category scale to analyze result tendency:

 Low – Sum of response frequencies at Completely Disagree + Disagree

 Neutral – Response frequency at Neutral

 High – Sum of response frequencies at Completely Agree + Agree

A rule set for tendency conclusions was applied next. The threshold value of 4 (29% out of a total 14)

respondents is used throughout as the lower limit for significant response frequency in a category.

The final scheme resulting in five possible results classes is as follows:

Classification
Frequency
Min-Max responses

Disagree
Disagree
- Neutral

Neutral
Neutral -

Agree
Agree Spread8

Low 9-14 4-8 0-3 0-3 0-3 (0) 4-7

Neutral 0-3 4-8 9-14 4-8 0-3 (1) 0-6

High 0-3 0-3 0-3 4-8 9-14 (13) 4-7
Table 2-1 Statement category classification scheme

8
 A classification where responses are either homogenously distributed over the responses range, or amass

equally at the Disagree and Agree ends of the response range with little neutral responses.

2
 M

et
h

o
d

o
lo

gy

19

As an example one of the statements’ results is provided:

Figure 2-3 Example for classification: tendency analysis

This example scores 0 (0+0) on Low, for it has no responses on both the ‘Disagree’ options. It scores 1

on Neutral for 1 respondent answered ‘neutral’. High scores 13 (10+3) as ‘Agree’ and ‘Completely

agree’ are mentioned often. When looking at the classification scheme, this 0-1-13 score corresponds

with the classification ‘Agree’ as it falls within the corresponding min-max responses corresponding

with the ‘Agree’ classification. The example is also marked Italic in Table 2-1 within the ‘Agree’

column.

Results of applying the classification scheme on statements are listed as tables in section 4.2.3.7.

2.4.4 Sampling, response rate and sample validity

After the format – with underlying scales and result classifications – was agreed on, the actual survey

could be distributed. Thus email invitations for the now online survey were sent. These invitations

were sent to the entire population of SME employees, and concluded with a remark that the survey

was only intended for developers and project managers. (Response reliability: only a handful of

employees at SME have non-developing jobs so there is low risk of non-developing personnel

corrupting survey responses; also at question 2 of the survey once more the survey targets were

stressed reducing false data risk as well) Next to the primary invitations, two more reminders were

sent by the researcher, and a final participation request was sent by a renowned SME employee.

Along with the full population sampling, easy online survey access and repeated reminders described

in the previous paragraph, anonymity was guaranteed to improve the survey response rate, as well

as session storage to enable respondents to complete the survey over multiple timeslots.

34 responses were received after the expiration date for survey completion. Of these 8 were

incomplete, of which 7 had responses showing corrupt data such as all questions scoring neutral or

min/max values throughout. These thus were omitted. The remaining single response held a

comment that the respondent in question worked less than one month at SME. This response was

also omitted for having a probable bias due to inexperience with SME development processes. Thus

in total 26 responses were included for analysis. Total response rate is 37% (26 respondents / 70

developing personnel).

2
 M

et
h

o
d

o
lo

gy

20

During result analysis, the variance in results was found to be too high to draw conclusions. This

implied taking measures to reduce this variance. There were three respondent identifiers included in

the survey: respondent’s business unit, respondent’s function, and respondent’s number of years

employed at SME. After analyzing results using these identifiers for result classification, business unit

was found accounting for the high variance. To the researcher this didn’t come as a surprise, as

earlier held interviews also showed variance in results between business units. Impacts of the other

two identifiers weren’t further analyzed, for they are regarded out of scope for this research,

because it aims to provide an holistic overview of test processes and not to dig into little varying

results amongst team members that happen to have different functions or employment durations.

After the identifier causing the high variance was identified, it was time to decide upon results that

should or shouldn’t be taken into account. At that time four business units existed at SME: Hub,

Energy, Automobile (Government) and Transport (Care). One way to pursue would be to separate

results for every business unit. But this would cause the result analysis to increase to four times the

original effort. So commonalities in results were sought. Energy and Hub (E&H) were found to have

similar results and could thus be regarded as one result subset, while still servicing two business units

with result analysis. The decision was made to pursue this subset and discard the remaining two

business units from further analysis to prevent result analysis from taking three times the effort as

forecasted. The following paragraph goes into detail on the validity of the E&H subset.

Results originating from Energy and Hub respondents are similar; this holds enough premises for

analysis validity. But a second opinion on the premises was asked. A handful of analysts and

developers of these two business units were consulted for their expert opinion. Their opinion was

that the subset E&H is valid for use. That’s because both business units have a high degree of

likeliness in development methodic. This is due to several reasons:

 They serve similar customers: both service mortgage lenders and insurers and build similar

applications.

 They apply alike market mechanisms: both engineer applications to order. At Automobile and

Transport (A&T) on the other hand, focus shifts towards Assemble-to-order (adapting

existing software to customer needs) or even towards Make-to-Stock (application is build for

future customers).

 They have an indifferent development environment: they both work with Microsoft’s .NET,

while at A&T Java is used. Both development camps have their own distinctive tools to aid

development. Along with that, Energy has only recently split off from Hub (January 2007),

which gives rise to large knowledge and work process overlaps.

 Manpower is often exchanged: developers and analysts are frequently traded for use in each

A&T’s projects. This trades knowledge and development routines intensively.

After discarding results beyond the selected subset – which was defended in the previous two

paragraphs – 14 respondents remained for inclusion in this report’s analysis. These 14 account for

56% of total developing personnel within these businesses (total developing personnel at Energy = 13

and at Hub = 12), which is a high enough rate for a survey’s data to be reliable.

2
 M

et
h

o
d

o
lo

gy

21

<<REMOVED DUE TO CONFIDENTIALITY
REASONS>>

Table 2-2 Survey Results: Population

Table 2-2 shows an almost even spread in respondents originating from Hub as opposed to Energy,

which proves an almost equal response rate for the two, that’s because businesses hold almost equal

amounts of development personnel and thus are likely to show equal respondent numbers. The next

respondent identifier is job function. Almost 3/4th part of respondents is developer while 1/4th had a

more shaping role as analyst or project manager. Senior Analyst scores 0%, which likely has to do

with respondents regarding themselves Project Managers over Analysts. These findings correspond

with enrollment data. This is also the fact with returned employment periods. These three factors let

the research conclude that the combined respondents form a valid sample for analysis.

Analysis on other possible subsets of the sample – like showing results sorted on function or showing

differences between older and younger personnel scores – weren’t pursued. This would supersede

this research’ exploratory nature.

2.5 Structured literature study
Goal of the performed structured literature study (see: section 2.5.1) was to identify agile best-

practices that would benefit SME’s testing process. In theory this resolves to identify and review

available agile development methodologies, and scan them for agile testing practices fit for use at

SME. After this scan is complete a multi-criteria decision structure would decide upon the one(s) to

use at SME testing. But in practice things turned out differently; out of the ten available agile

development methods, just one agile testing practice could be identified that was fit for use. The

selection of this practice is justified in section 2.5.2.3 and the research path leading thereto in

sections 2.5.2.1 – 2.5.2.3.

2
 M

et
h

o
d

o
lo

gy

22

But the single selected agile best practice on its own doesn’t solve all issues of testing at SME, for it

lacks in delivering project management aid. Because the aim of this research is to provide SME with a

solid holistic approach to testing, supplement practices that can provide the needed guidance were

needed. Thus a supplementary literature study was required. Two additional best-practices – Metrics

and Continuous Integrated Testing – were selected to deliver renewed steering and control. Further

details on research steps towards selection of these additional best-practices are described in section

2.5.3.

2.5.1 Agile methodologies study

For a literature study to be representative to a topic a systematic search needs to be performed at

first. This section describes the search and evaluation methodology followed to identify articles for

use in this study.

To arrive at a proper literature study a primary principle is to use quality sources. To satisfy PhD-level

sourcing a search through the top 25 journals on Information Systems (IS) is required.

To search the academic field search engines Web of Science, Scopus and Ingenta can be used in

conjunction to (almost) satisfy the PhD-demand. Except for Communications of the AIS the combined

uses of these three indexers will result in a full coverage. (Schwartz and Russo 2004) But the same

reference lists top 50 IS journal so why not try and cover them all? This should results in an even

lower level of false-negatives. When cross-examining the coverage of the three search engines, the

combination covered 44 journals. So six journals were lacking: Communications of the AIS, Journal of

the AIS, Journal of Information Systems, Electronic Markets, Journal of CIS, Australasian Journal of IS

and Scandinavian Journal of IS. These were successfully looked up and searched through on an

individual basis.

In the 1st tier of the research combinations of the following keywords were used:

Software Test Information

System

Application

These keywords were lead by added ‘agile’ and synonyms thereof to ascertain a genuine search in

the direction of agile methodology: ‘light’ / ‘short-cycle time’ / ‘internet time’ / ‘web time’ / ‘rapid’ /

‘test driven’

These keywords were followed by an added synonym of ‘methodology’, including ‘method’ / ‘tool’ /

‘development’ / ‘framework’ (For example the search phrasing ‘agile software methodology’ would

return as one of the search terms.)

The effect of this combination was using 6*4*5 = 120 search terms.

This initial search provided 373 results. After combining the results of the various search engines 211

unique articles remained of which 49 articles were selected by referencing article title (rough) and

abstract (thorough) to possible agile testing importance. The high percentage of false-positives was

(also expected) due to the ‘hot’ and thus commonly used keywords ‘internet’, ‘web’ and ‘rapid’.

Using full text analysis 40 articles were awarded valid for use. Inclusion criteria that needed to be

met were: (1) the focus of article lies on methodology and (2) the describes methodology must

follow agile principles.

2
 M

et
h

o
d

o
lo

gy

23

At the same time this resulted in a new set of keywords and synonyms to be used in the next search

tier.

In the 2nd tier of the research the names of the individual agile methodologies were used as

keywords.

Analog to the first tier there were 76 results, with 54 unique articles. After cross-examining these

with earlier results 27 new papers remained of which 12 were selected as being fit for use.

Using forward and backward searching out of valid results 8 extra articles were added.

The 3rd tier concentrated on metrics by combining tier 1 keywords with keywords ‘metric’,

‘measurement’, and ‘indicator’. And on CIT by searching on ‘Continuous Integration’, ‘Continuous

Integrated Testing’ and their abbreviations CI and CIT.

2.5.2 Results agile methodologies study: the path to TDD

N.B. This section corresponds with the former agile research questioning, a literature study was

conducted to identify agile development methodologies that are widely known and applied

and could have some implications for testing. In the renewed research questioning XP’s

iterative testing that is identified below, is awarded a best-practice.

A small overview of the nine available agile methods is given. Their overlap was found to be limited

to the approach of iterative testing. Of all nine methods only one method (XP) was found to have a

detailed and concrete way to perform testing, where the others remain at a high abstraction level

limiting application of their principles and at the same time lacking empirical backup for their axioms.

2.5.2.1 Nine agile methods

Over the last few years agile software development methods gained momentum in both business

application as academic information science coverage. (Abrahamsson, Salo et al. 2002; Lindvall, Basili

et al. 2002; Lindstrom and Jeffries 2004; Nerur, Mahapatra et al. 2005; Schwaber and Fichera 2005).

But while their popularity is on the rise, only one article could be identified that includes a structured

overview of currently available agile methods during the performed systemic literature study. The

authors thereof provide a detailed evolutionary overview of (agile) software development methods

(See: Figure 2-4) leading to what they define as the nine agile methods of today. (Abrahamsson,

Warsta et al. 2003)

2
 M

et
h

o
d

o
lo

gy

24

Figure 2-4 Evolutionary map of agile methods (Abrahamsson, Warsta et al. 2003)

These are9:

Agile development methodology Author(s)

Adaptive software Development (ASD) (Highsmith 2000)

Agile Modeling (AM) (Ambler 2002)

Crystal family (Cockburn 1998, 2000, 2002)

Dynamic systems development method (DSDMConsortium 1997; Stapleton 1997)

Extreme Programming (XP) (Beck 1999a, b, 2000)

Feature-Driven Development (FDD) (Coad, J. et al. 1999; Palmer and Felsing 2002)

Internet-Speed Development (Cusumano and Yoffie 1999; Baskerville, Levine

et al. 2001; Baskerville and Pries-Heje 2001)

Pragmatic Programming (PP) (Hunt and Thomas 2000)

Scrum (Schwaber 1995; Schwaber and Beedle 2002)

Table 2-3 Agile Methods

9
 For detailed descriptions of the methods please refer to the original author’s papers.

2
 M

et
h

o
d

o
lo

gy

25

But what exactly makes them agile? All Agile methods aim for simplicity and speed. Also all of them

follow the four values and 12 principles of the Agile Manifesto10. (Fowler and Highsmith 2001)

In more detail agile methods are characterized as having the following attributes: (Abrahamsson,

Warsta et al. 2003)

 Incremental – using small software releases with rapid development cycles

 Cooperative – close customer and developer interaction

 Straightforward – method is easy to learn, modify and is sufficiently documented

 Adaptive – the ability to make and react to last moment changes.

Lindvall, Basili et al. (2002) devised a highly similar characteristics list, consisting of: Iterative,

Incremental, Self-Organizing and Emergent. Emergent can be easily translated to the combination of

former Adaptive and Straightforward, while Self-Organizing is a certain addition to the agile

characteristics, for all methods use less dictated control and let teams organize themselves.

Other authors have made several other characterizations for agile methods, but these won’t be used

here. For a full discussion see the elaborate analysis of Abrahamsson, Salo et al. (2002).

2.5.2.2 Iterative testing

When taking a step deeper into characteristics of agile methods towards commonalities for testing

only one common ground could be discovered: iterative testing. Because short release iterations are

common in all methods, a direct implication for testing is that it will be performed more regularly

than when compared to traditional formal methods for software development. While testing in

formal methods is still done as one of the late and separated activities in software development

(behind requirements analysis, design and coding) it will be done continuously and earlier than

before, because of small programming cycles.

2.5.2.3 Empirically only XP and SCRUM are covered

When examining possibilities in testing approach more closely, the agile methods lack detail. This is

due to these methods aiming to enable a collaborative mindset within the development team and

thus not go into details about how to implement this. (Abrahamsson, Salo et al. 2002) The same

authors performed an elaborate analysis of current agile methods using several analysis lenses. The

first lens Systems Development Life Cycle (see: Boehm (1988)) answers the question “Which stages of

the software development life-cycle does the method cover”. For testing the following four phases

are identified. These are (in chronological order) Unit test, Integration Test, System Test and

Acceptance Test. The second lens Abstract principles vs. concrete guidance tries to answer whether

or not the method has concrete guidance available. XP is the only method that (partially) satisfies this

demand looking at test phases. Unit, Integration and Acceptance tests are covered. This means

concrete guidance for system tests is missed in all agile methods. When applying a third lens Project

Management, sadly XP is found lacking throughout. Thus supplement practices to cover project

management activities should be sought.

XP’s workings and accompanying promising benefits for testing are shown in sections 5.1.1 and 5.1.2.

10

 For details please refer to www.agilemanifesto.org

http://www.agilemanifesto.org/

2
 M

et
h

o
d

o
lo

gy

26

N.B. Please note once more that system testing isn’t handled in any of the agile methods. When

combining this with time constraints of this Bachelor assignment – where there isn’t enough

time to perform another literature research in other than agile methods – this implies this

Bachelor thesis won’t (fully) cover system testing.

2.5.3 Metrics and CIT to guide project management

With the agile methodologies study delivering just one best practice – XP’s TDD – it can be concluded

that not all issues will be solved properly after implementation, although TDD certainly does help

(see: section 6.3.1). The previous section showed that TDD falls short on project management

guidance. Because this guidance is key to a proper testing approach, and because SME currently

severely lacks project management for testing, additional best-practices to counter this shortfall are

required. This implied performing further literature study.

This literature study provided two additional best practices, Metrics and Continuous Integrated

Testing (CIT). Metrics was selected for its enforcement of objective steering and control through

numbers. CIT was selected because it severely shortens the feedback loop on software quality

through the use of an automated regression test suite immediately uncovering defects upon

injection.

The additional literature study was performed analog to the agile methodologies study. The same

search engines and journals were consulted. Keywords did differ, used search keywords were

combinations of prefixes ‘project/defect/software/quality’ joined by suffixes 'measurement/

management/metrics/evaluation/steering/control’. This search was further supplemented by

rewarding extra attention to Software Process Improvement (or: SPI) frameworks11. These were

searched for at the search engines and in a supplementary web search. After two search iterations

63 books, articles and/or reports remained fit for use.

The applied selection criteria were: the best practice must (1) ensure testing project management,

(2) should contribute as much as possible in solving SME’s testing issues, and (3) should fit within the

agile development setup at SME.

During analysis of search results, it quickly became evident that every SPI framework relies heavily on

the use of metrics. They list metrics as a key ingredient for project management’s steering and

control. (Fowler and Rifkin 1990; McFeeley 1996; Rainer and Hall 2002; van Solingen 2004) Metrics

help to ensure the development process is under control. (Kan, Basili et al. 1994) At the same time

steers people to change their behavior — they agree on a target and work toward it. As progress

becomes reflected in the measured results, people make modifications to improve the outcome.

(Fowler and Rifkin 1990) This holds enough value for SME to gratify selection. The actual metric

instantiations and selection methodology thereof is listed in section 5.3.

11

 Reports on how to setup process improvement projects to improve development. These frameworks are mostly

published by renowned Universities and provide valuable insights on available best-practices. These make

excellent reference points on best-practices up for selection.

2
 M

et
h

o
d

o
lo

gy

27

Second selected best-practice is CIT. CIT was selected because it minimizes the project management

steer and control loop by continuously verifying whether the extensive automated test suite still

passes. The researcher expects CIT to perform as a catalyst to guarantee (needed) continuous

attention for testing.

CIT and its benefits are explained in section 5.2.

N.B. Stringent selection criteria to arrive at the two selected practices weren’t applied because of

the already boomingly rising size of this bachelor’s thesis research due to this additional

required literature study. The researcher chose to spend more time in indexation and

analysis of best-practices than to spend it in devising a multi criteria decision analysis tree,

normally required for this type of selection. A pragmatic selection was used on basis of

researcher’s good judgment.

3
 C

u
rr

en
t

Si
tu

at
io

n

28

3 CURRENT SITUATION
The current situation at SME doesn’t suit testing needs, nor does it stimulate proper testing. This has

various reasons:

 Responsibilities are too informal and lacking enforcement for test execution

 Developers hold inadequate knowledge about testing possibilities and methods

 The development priority for testing versus other development activities is too low

 Some test resources aren’t available, impeding proper testing

 Quality isn’t objectively measured which causes unwanted subjectivism in defect

management

 Customers aren’t adequately steered/helped towards useful functional and acceptance

testing

Sections 3.1 and 3.1.1 – 3.1.6 will argue for the above. Section 3.2 forwards to types of testing

currently in use; these will be dealt with further on at section 4.2.2. Section 3.3 states the absence of

a common test methodology, despite from limited customer-appointed TMAP Next12 usage. In

section 3.4 probable reasons behind this testing absence are mentioned: the evolutionary or chaotic

way of work process development combined with deadline and monetary pressure limit software

process improvement projects (of which testing is one needed project).

12

 A structured software testing methodology from Sogeti, commonly applied in the Dutch financial industry. For

details please refer to http://www.tmap.net.

http://www.tmap.net/

3
 C

u
rr

en
t

Si
tu

at
io

n

29

N.B. From this point forward, cross-references to survey statement results will be depicted as

(<question number> - <result>). For instance (8 – Agree) corresponds to statement #8 – testing

occurs ad-hoc – scoring mostly Agree. The numbered statements are listed in Table 3-1 below.

Please refer to section 4.2.3.7 for the elaborate statements list including expectancy and

deviations as well as the result classification scheme.

Statement Result

1 Customers should write own test plans Neutral - Agree

2 Customers test properly Disagree - Neutral

3 Customers need support during testing Agree

4 Customers should test at SME Disagree - Neutral

5 Customers are available for context questions Neutral - Agree

6 Customers are involved in the testing process Agree

7 The current development planning guarantees enough testing Disagree

8 Testing occurs ad-hoc Agree

9 Testing is skipped/ severely shortened upon endangered development
deadlines

Agree

10 Test execution is stimulated by project managers Neutral - Agree

11 Feedback on own code via bugs arrives soon enough Spread

12 Testing receives enough attention Disagree

13 I am certain of effects of checked-in code on application Neutral - Agree

14 Amount and quality of testing is highly dependent on developer personality Agree

15 Attention for testing degrades as development progresses Spread

16 Influence of code changes on total system behavior is underestimated Spread

17 Testing is performed without a clear strategy Spread

18 Code is written to be testable Disagree

19 Effects on the rest of the application are unknown during refactoring Disagree - Neutral

20 Current unit tests test to large chunks of code at once Disagree - Neutral

21 Less time required for bug fixes by testing more nets less total development
time

Agree

22 I feel confident about bug freeness of current delivered applications Disagree - Neutral

23 When working with live code, tests are executed more often Spread

24 Acceptance tests provide a proper point of departure to see how 'done' the
application is

Agree

Table 3-1 Statements and collapsed survey results

3.1 Overall picture: testing in trouble
Both the held interviews as well as the survey showed testing processes aren’t structurally anchored

in the development process. (8 – Agree on ‘testing occurs ad-hoc’, 7 – Disagree on ‘Development

planning guarantees enough testing’ and 12 – Disagree on ‘Testing receives enough attention).

Testing is awarded a fixed percentage of time of the development budget which is theoretically

executed near the end of the development process, like in the well known waterfall model. In

practice however this testing budget and time is swapped for even more untested features,

originating from new-feature request customer pressure near release (frequently called ‘feature

creep’) or simply by not reaching development deadlines. Another factor severely preventing proper

testing to take place is the developers lagging behind on writing testable code (18 – Disagree).

3
 C

u
rr

en
t

Si
tu

at
io

n

30

Testing is reactively steered by high levels of defects in part(s) of an application. The only observed

exception to this latent attitude towards defects is the creation of test documents in conjunction

with customers that list use cases that need at least to function upon release. This is used proactively

for the creation of functional tests, however as development progresses these tests aren’t updated

and thus lack accordance to requirements change during development. These tests are manually

handled just before a release. Other types of tests are hardly executed and automation levels are

low. For a detailed description of test types and execution levels please refer to sections 4.2.1 - 4.2.3.

When discussing repetition of test cycles, or more advanced regression testing, this isn’t applied at

all. Probably this is due to lack of a central tests database and agreement on execution cycles.

Integration of separate developed application features to form a release is also a painful issue,

because this isn’t attempted earlier than applications being 80% complete, commonly resulting in

integration defects. Likely cause to this delayed undertaking is the acceptance reasoning in which

testing is entrenched. The very nature of (the current non-agile form of) acceptance testing from use

cases requires applications to be near complete in order to create viable test cases.

Above test process observations, perceived problems and possible trouble causes are listed at a

macro overview level. To further strengthen the analysis deeper cause and effect relations were

sought in interviewing key developers and analysts. This was supplemented further by continuously

observing a development team in action. After a couple interviews and moving further ahead in time

a handful issues categories were visible. They are:

Issue category Description
Responsibilities In which way are responsibilities for testing divided through

development teams?
Knowledge / Competence Does the development team have enough expertise to properly perform

testing tasks?
Priority How does testing wage up against other development activities?
Resources Are tangibles (hardware, software, methods, checklists, etc.) available?
Quality Management What actions are taken by project managers to guarantee software

quality?
Customer Guidance Does the customer gain proper testing guidance if needed?
Table 3-2 Issue categories

The following sections 3.1.1 - 3.1.6 go into detail on the role of testing and quality maintenance

during development. Each section features an individual issue category. Please note that some issues

fit multiple categories, but for matter of oversight these are only appointed to the best fitting

category, instead of mentioning them repeatedly.

3.1.1 Responsibilities: too informal

The responsibility for quality code rests with developers. It’s up to themselves whether or not this

requires testing, and to what amounts (14 – Agree). Project managers do not adequately steer on

required testing levels or specific functionality that need to be thoroughly tested (10 – Agree).

3
 C

u
rr

en
t

Si
tu

at
io

n

31

Both these issues cause causes low levels of test execution and test script maintenance. The

individualism (14 – Agree) originating from this free and uncontrolled test paradigm has lead to

personal and private testing. It also leads to an apparent impossibility for project managers to

address these problems like the unwanted high variation in test quality and impossibility to set

minimum test quality and quantity demands. See also section 3.1.5.

3.1.2 Inadequate knowledge / competence

Developers’ knowledge of various test types is inadequate. The survey frequently reports limited and

absent levels, while minimum knowledge levels should naturally score at least adequate. In

customers’ test type knowledge the survey showed high spread, proving interview anecdotes of

some customers being more test capable than others. But high spread sadly also covers a lot of

limited and absent survey scores on test competence, which again shouldn’t be observed. This is

possibly due to lack of SME originating guidance on how to setup and execute proper test

procedures. See section 4.2.3.5 for corresponding survey results.

3.1.3 Low priority

The most pressing concern on the role of testing at SME is a lack in priority. This is due to two

reasons, firstly a great amount of researcher observations point to its existence and secondly the far-

reaching consequences of shorting a core activity of the Systems Development Life Cycle13, which are

visible throughout this report.

The survey proved that testing in general doesn’t receive enough attention (11 – Disagree).

Furthermore there is neither test planning nor targets (7 – Disagree) and thus testing occurs ad-hoc

(8 – Disagree). Next to this, over half of the survey respondents report (Completely) Agree when

asked if testing is performed without clear strategy. (17 – Spread) Wrapping up, a small anomaly in

the priority-lack presumption needs to be mentioned, for test execution is somewhat stimulated by

project managers, (10 – Neutral – Agree) which does show testing isn’t missed completely.

An example of testing receiving too little attention – at the cost of other activities – is a phenomenon

called feature creep, where near release deadlines customers and project managers tend to include

additional untested features over testing already implemented ones. According to the interviews,

feature creep is a frequently observed phenomenon at SME development projects. Two survey

results (partially) back this observation: testing tends to be skipped or severely shortened upon

endangered deadlines (9 – Agree) and attention for testing degrades as development progresses (15

– Spread). While the customer gets some extra wanted features, this is a high stakes game to play for

SME. This is because for now the customer is happy with the extras, but this takes a high toll on the

future. Latent bugs in older features aren’t discovered by testing and at the same time new bugs are

likely to be implemented at a high rate, because of the high coding pressure and speed that’s

required in last-minute development work leaves great margin for error.

13

 SDLC adheres to important phases that are essential for application development. A traditional SDLC is

composed of the phases Initiation, Requirements Analysis, Design, Build, Testing, Implementation and

Operation and Maintenance. Every phase holds essential and unique development activities that no development

can do without.

3
 C

u
rr

en
t

Si
tu

at
io

n

32

3.1.4 Partial lack of resources

In the survey the level of dedicated test resources was asked, to find that three out of five basic

testing resources (mentioned in the interviews) are hardly available. There’s a lack in test scenarios

(Limited), templates (Absent – Limited) and common tools (mostly Limited). It’s odd to see that

relevance of these resources is awarded importance throughout, but missing availability. A reasoning

as to why these resources aren’t available probably rests within the aforementioned lack of priority.

The fourth resource, a build server, is available (Adequate – Perfect), but during observations it

became evident that real agile possibilities hereof aren’t applied. These include the heavy use of

automation and regression, which are hardly applied (though deemed important from survey

outcomes; see: Table 4-6 and Table 4-9 of sections 4.2.3.2 and 4.2.3.4 with results showing tendency

towards agreement) at SME. At the final resource – dedicated test hardware – great spread in survey

response was observed, over half of the answers however were marked as Adequate.

For full results of test resource availability see section 4.2.3.6.

3.1.5 Quality management bears subjectivism

The interviews proved that software quality is currently steered subjectively by gut feel of project

managers. This is supplemented only by reactive countermeasures taken when (parts of) the

application doesn’t function as supposed. The lack of objectivism (i.e.: quality indicators) adds to

existing difficulties (see: section 3.1.1) in steering on quality. The lack of objectivism is likely to fuel

the lack of development teams’ confidence in bug-freeness of developed applications (22 – Disagree

– Neutral).

3.1.6 Limited customers guidance

According to the survey, customers don’t test well enough (2 – Disagree – Neutral), the interviews

show that some customers know a lot about software development while others don’t. This is

furthermore backed by showing almost a normal distribution pattern on knowledge level of the

customers at both functional and acceptance testing. Next to knowledge, customer involvement was

also asked. This was – in contrary to developer interviewee anecdotes – found to be ok (5 – Agree

and 6 – Neutral – Agree), during the interviews it became evident that knowledge and priority lack

cause less than required amounts of testing. A way to counter (at least) the knowledge lack would be

to assist customers in their testing. Sometimes this is done with customers via testing workshops and

meetings, but still these activities do not amount to the regarded necessity for customer test

assistance (3 – Agree). This limited assistance probably has to do with development teams’ slight

tendency to have customers write their own tests (1 – Agree).

3.2 Types of testing
For a complete overview of testing types see section 4.2.1.

3
 C

u
rr

en
t

Si
tu

at
io

n

33

3.3 No overall methodology, limited TMAP NEXT application
There is no common testing methodology in use at SME. Some recent projects do use Sogeti’s TMAP

NEXT methodology because of the financial customers’ familiarity with this testing framework. But

interviews state the ‘following’ of this methodology is limited to using the templates for functional

testing only. This was confirmed by examining a sample of previously delivered TMAP NEXT

formatted test reports (only in Dutch available thus unattached to this report), where only functional

and user acceptation tests outcomes were mentioned and results thereof reported.

Furthermore; observations supplement the finding that testing doesn’t follow any methodology.

Testing processes function in an ad hoc and ill-defined way.

3.4 Realization current test process
The interview questions aiming for reasoning behind the absence of testing didn’t result in useful

answers. Practically every interviewee has no answer as to why testing currently is a mere shell. An

explanation few times mentioned is the natural reluctance developers hold against testing,

preferring coding as building over testing as breaking code. One developer provided another answer

deemed as a more likely explanation by other development team members as well as the author of

this report: so far there hasn’t been anyone within SME that has a clear vision with underlying

expertise in testing and champions its application. Without such a champion pushing for change

there won’t be anybody that raises questions or undertakes actions on improving testing.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

34

4 CURRENT PERFORMANCE
Current performance in software quality at SME was found impossible to measure, because it isn’t

measured during the development process. Unfortunately this couldn’t be mitigated by setting up

objective measurements, for they are too time-consuming to setup and collect within the context of

this Bachelor’s Thesis.

A more subjective and less detailed measurement scale was thus required. This was found in Kan’s

Effort/Outcome Matrix. (Kan 2003) This tool is applied in section 4.1 to find that SME resides in either

‘Unsure’ or ‘Worst-Case’ test functioning.

This matrix aids in assessing testing performance, for it supplements the usual – but here unavailable

– Outcome (quality as defects found) by Effort. While Effort doesn’t hold a perfect positive

correlation with Outcome, it does hold some premises. That’s because the use of tests correlates

with finding defects more often as well as earlier. In other words: higher Effort means improved

Outcome.

Effort was found to be measurable: it’s quantified in this research by analyzing the use of test types

and underlying principles. Section 4.2 shows that testing isn’t applied in required intervals, and

underlying test principles also mostly aren’t in effect.

4.1 Testing performance: ordinal ‘Unsure’ at best
During the interviews it became evident that there are no structural testing performance indicators

currently in use. The only indirect performance metric available is the amount of outstanding defects

with accompanying defect backlog. This is used subjectively, when project management believes

there are too many outstanding bugs the software quality is found to be lacking, while when there

are few bugs discovered the quality is perceived as high enough. This is a risky way to attain software

quality as Kan (2003) clarifies in his Effort / Outcome Matrix. To show some classification of testing

performance, compensating for the lack of indicators, this matrix was used.

 Outcome (Defects Found)

Ef
fo

rt

(T
es

ti
n

g
Ef

fe
ct

iv
en

es
s)

 High Low

High
Cell1

Good/Not Bad

Cell2

Best-Case

Low
Cell3

Worst-Case

Cell4

Unsure

Figure 4-1 Effort/Outcome Matrix (Kan 2003) (adapted)

When observing the Matrix (see: Figure 4-1), four quadrants are identified. These quadrants are

differentiated by two dichotomous indicators. The first is the amount of effort put into testing, the

second the amount of discovered defects.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

35

The Effort level is certain at ‘Low’ level. This is due to limited current attention to testing, expressed

in lack of indicators (mentioned at the beginning of this section), limited testing over the six levels

(see section 4.2.2) and unit as well as integration testing often coming to a halt because of high new

feature pressure originating from the customer near the end of development pushing testing out of

release planning. The held interviews and survey both clearly indicate this limited effort.

At SME the Outcome indicator is Low, because in general the amount of discovered defects in

software releases is perceived as low by both project managers directly via low levels of bugs listed in

the Mantis Bug Tracking Tool as by customers that state SME delivers great software (both notions

originate from held interviews). Interviews often resulted in the statement: “we are lucky to have

great developers”, pointing out clearly that the few occurring defects have little to do with proper

testing, but with few errors being made by well performing developers. Perhaps the learning curve of

going through earlier likewise development projects accounts for this outcome. Extra care needs to

be accounted to the internal perception of defects however, there is no baseline measurement to tell

whether this ordinal scale should be valued High or Low. In the current situation, where limited

attention is geared towards testing one could would probably only see a small part of total defects.

(Indicating the likely high but unknown level of sub-merged defects for a limited part of the

application is tested). The perception of customers judging defects as Low, can be awarded higher

value however. It is highly likely that these customers have gone through similar software

implementations with other application developers like SME before SME and so they do have

baseline information to benchmark ‘right’ from ‘wrong’.

The result from combining the two above indicators, places SME in either Cell4: ‘Unsure’ or in Cell3:

‘Worst-Case’, where the likeliness of the former is highest. That’s because the opinions of customers

(Low Outcome) are valued higher than project managers’ (unknown Low or High Outcome) opinions.

After all, the customer is the one who perceives defects upon usage. Either way, by putting more

effort into Testing Effectiveness this can be raised to at least a certain Not Bad level, which should

result in a raised perceived software quality (i.e. fewer defects). In chapter 5 possible improvements

to achieve this upgrade are listed.

Please note that this section doesn’t hold quantified results to be able to state with confidence how

SME performs towards defect levels. This requires both an elaborate setup as strictly disciplined and

lengthy data gathering which simply isn’t possible to perform in the light of this research. This

remains something for the future.

4.2 Low execution levels throughout test types
The following sections cover definitions of test types (section 4.1) as well as the troublesome test

execution levels and underlying principle usage (see: section 4.2).

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

36

4.2.1 Test types

In order to properly discuss testing types (or their execution levels), first the seven main types of

testing are discerned below. These definitions aren’t agreed on14 completely, and often they are

confused with one another, so their exact meaning (at least in this research) is listed here. (Fewster

and Graham 1999; Jones 2000; Sogeti 2008)

Test type Definition

Unit Tests the minimal software component, or module. Each unit (basic
component) of the software is tested to verify that the detailed design for the
unit has been correctly implemented. In an object-oriented environment, this
is usually at the class (containing attributes and methods) level, and the
minimal unit tests include the constructors and destructors.

Integration Exposes defects in the interfaces and interaction between integrated
components (modules). Progressively larger groups of tested software
components corresponding to elements of the architectural design are
integrated and tested until the software works as a system.

System Tests a completely integrated system to verify that it meets its requirements.

System integration Verifies that a system is integrated to any external or third party systems
defined in the system requirements.

Functional Tests at any level (method, class, module, interface, or system) for proper
functionality as defined in the specification.

Acceptance Can be conducted by the end-user, customer, or client to validate whether or
not to accept the product. Acceptance testing may be performed as part of the
hand-off process between any two phases of development.

Table 4-1 Seven types of testing (Sogeti 2008) (Jones 2000) (Fewster and Graham 1999) (adapted)

14

 Definitions vary greatly as well as how many different test types should be discerned. It’s a matter of focus the

author believes. In agile frameworks the mentioned six test types are commonly discerned, although their

definitions vary slighty amongst different practitioners and researchers. Definitions from the three mentioned

papers were combined to provide the best fitting definitions.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

37

4.2.2 Condensed test and principle usage

Below the usage, automation and regression quantity of the six types of testing at SME is shown, split

in qualitative and quantitative results.

Principle Usage Automation Regression

 Source

Test type

Int+ Obs. Survey Int+Obs Survey Int+Obs Survey

Unit testing Weekly –
Monthly

Spread None Spread None Spread

Integration
testing

Monthly Per Release
– (Almost)

Never

None 0-20% None Per Release
– (Almost)

Never

System
testing

Per Release
/ Only when
threatened

by SLA

Monthly -
Per Release

None 0-40% None Per Release
– (Almost)

Never

System
integration
testing

Per Release Per Release
– (Almost)

Never

None 0-20% None Per Release
– (Almost)

Never

Functional
testing

Per Release Per Release Sporadic 0-40% None (Almost)
Never

Acceptance
testing

Per Release Per Release None 0-40% None Per Release
– (Almost)

Never
Table 4-2 Condensed Results Test Execution: Quantitative vs. Qualitative

This section only handled condensed findings to provide a quick test use overview, and thus will not

comment on results. For the full analysis please refer to all sections under 4.2.3.

4.2.3 Complete test and principle usage

Sections 4.2.3.1 – 4.2.3.7 below cover results from the survey. Available statistics will be provided

and supplemented by qualitative comments per survey category. Section 4.2.3.1 entails the limited

use of tests at (almost) all test types, even when deemed highly relevant. Section 4.2.3.2 and 4.2.3.3

list absent regression and thus regression usage falling greatly behind on test frequencies. In section

4.2.3.4 automation is found to be hardly applied, possibly due to neutral relevance. The test

knowledge level of developers is proven mostly limited in section 4.2.3.5, while customers’

knowledge is spread. Various test resources are deemed important, but found unavailable at section

4.2.3.6. Lastly at section 4.2.3.7 various statements on development undertakings are commented.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

38

4.2.3.1 Test use far too limited for perceived relevance

Table 4-3 Survey Results: Test Use Frequency

The table above lists survey results for test use frequencies. The figures show number of responses

per category15. Clearly visible in all test types except for Unit Tests is that the respondents tend to

choose for longer intervals of test occurrences, starting at monthly and ending at (Almost) never with

per release being the modus. At Unit testing an unexpected distribution of answers is visible with all

answers occurring almost evenly distributed. This wasn’t expected for interview results show

virtually no use of unit tests.

Conclusions:

 Too often too large test intervals are observed.

 (Almost) never’s shouldn’t show in a viable testing setup, but they do occur.

15

 All survey result figures report response frequency per answer category, but with varying scales. For an

explanation on applied scales, please refer to Section 2.4.2

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

39

 Monthly Unit and Integration Testing frequency is below agile frequency range, testing these

weekly might even be too few, for agile methodologies report sub-daily builds including

automated test runs.

 System (+ Integration) Testing occurs monthly, which relates exactly to a 4 week per release

system test or a per halve release system test when using 8 weeks as the release period.

 Functional Testing per release is too few, this implies once per release / per half release

(depending on chosen release frequency 4/8 weeks) testing to see if required functions

work. In agile development this is generally performed as soon as individual functions are

completed, thus: well before the end of a release.

 Acceptance testing is performed per release, which is also few in agile testing/development,

where customers are highly valued for continuous input.

Table 4-4 Survey Results: Test Use Relevance

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

40

Table 4-4 shows to what importance the test types are valued. For Functional and Acceptation the

results show (almost) everyone agrees they are of high importance. For Unit, System and System

Integration tests there is more spread in the results, but a tendency can be observed towards Quite

Important. Integration relevance isn’t agreed on, but a tendency towards importance is present.

Conclusions:

 All tests are regarded as important, but to varying levels.

4.2.3.2 Regression? What regression?

Table 4-5 Survey Results: Regression Use Frequency

The above Table 4-5 shows the use of regression (performing tests in a repeated setting) at the

various test types. A general negative tendency is clearly visible, with highest occurring response

frequencies on (Almost) never. For Unit and Integration tests a wider spread can be observed.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

41

Conclusions:

 (Almost) never shouldn’t occur.

 Regression is at a maximal per release activity, this is far apart from proposed build

integration cycles in various agile methodologies.

Table 4-6 Survey Results: Regression Use Relevance

Relevance levels for Integration, System, System Integration, Functional and Acceptance testing show

a tendency towards importance of regression. At Unit testing however the tendency is visible, but

less severe, for results include a lot of neutral responses and some unimportant rated ones.

Conclusions:

 Regression is deemed a relevant practice for all testing types.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

42

Upon comparing actual regression use and its perceived relevance, a large gap between need and

use is observed. Where actual use is (severely) limited to happening per release or (almost) never,

perceived usefulness instead scores very high. This is a remarkable contrast, for the essence of

regression is frequent occurrence, which misfits current testing practice.

4.2.3.3 Regression lacks behind test frequencies

Table 4-7 Survey Results: Test Use Frequency vs. Regression Use Frequency

Table 4-7 shows usage next to regression of the different test types. It shows regression levels

lagging behind on test execution levels (visible as red columns amassing further right than their blue

counterparts). A counterargument for this could be that not all tests need to be included in

regression suites, but the results of these two measurements lie too far apart to fully account for

that variation.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

43

4.2.3.4 Automation zero to none accompanied by relevance neutrality

Table 4-8 Survey Results: Automation Use Frequency

Table 4-8 above shows automation levels of all tests to be very low, mostly peaking around 0-20%.

An exception forms the Unit tests where a distribution is observed ranging from 0 to 100%, indicating

high variance in Unit test application, which is likely linked to the individual and private Unit test

approach observed and uncovered during the semi-open interviews.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

44

Table 4-9 Survey Results: Automation Use Relevance

Table 4-9 above lists relevance levels for the test types. Unit and Integration tests are deemed

important, where System, System Integration and Functional tests tend to result in neutrality. Finally

acceptance test automation has a slight trend towards unimportance. Overall the matter of

automation thus shows neutral opinions, however with Unit tests as highly important and

Acceptance tests as slightly less important. Possible reasons for this neutrality weren’t further

investigated but could include: low awareness of automation potential or (especially for system

testing) unexpected payback of automation over manually execution.

When comparing automation use frequency levels with automation use relevance levels of the two

high relevance scoring tests Unit and Integration, automation levels have fallen behind on perceived

importance demands (read: high automation).

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

45

4.2.3.5 Developer knowledge level lacking, customers‘ level varies

Table 4-10 Survey Results: Knowledge Level Developers / Customers

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

46

In Table 4-10 knowledge levels of developers as well as customers are listed. Developers are

expected to have knowledge about all test types and thus were asked for all types. Customers

however only see and perform Functional and Acceptance tests and thus their competence on only

these two tests was asked. At least adequate scores on every test type should be attained for them

to be performed properly. When observing the resulting data, this isn’t the case. When discussing

developers’ knowledge level, all test types except for Unit tests show a distribution peaking towards

lack of knowledge. Unit tests score adequate with a slight tendency towards ample knowledge.

Possible reason for this ‘anomaly’ is that this test type requires hardly any testing skills, as their

creation and execution lies close to ‘normal’ coding activities developers perform. When observing

customer knowledge levels a somewhat normal distribution is visible. This shows what was observed

in the interviews, that some customers have adequate knowledge of testing, while others haven’t.

4.2.3.6 Test resources important yet unavailable

Table 4-11 Survey Results: Availability Test Resources

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

47

In Table 4-11 the availability of several test resources is visible. Test scenarios, basic test sets and

easily maintainable tools are found to be limitedly available. dedicated test hardware centers around

Adequate but covers all availability levels, so caution needs to be exercised when drawing

conclusions from that data. Finally continuous build server(s) are available and score adequate to

ample availability.

Table 4-12 Survey Results: Relevance Availability Test Resources

Table 4-12 shows the importance of test resources availability to developers and project managers.

When examining the results of the survey, four out of five test resources look to have a similar

relevance distribution, peaking towards quite important. The fifth test resource: basic test sets,

shows a similar peak on quite important, but isn’t mentioned as unimportant at all compared to the

other four resources. So in general, all these resources are valued important.

When comparing these results to those of the test resources availability, they are found to be

lacking, for at every resource availability relevance ranks high, while actual availability scores mostly

limited.

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

48

4.2.3.7 Various statements

In Table 4-14, Table 4-16, Table 4-18 and Table 4-20 results of the survey’s statements are covered.

These statements were included to test anecdotes coming from interviewees for general validity. In

short tables, actual results are compared to expectance and awarded a color code for amount of

match. CAPS GREEN equals a perfect match, Italic Yellow a partial match and Underline Red no

match. The results from individual statements will not be commented upon, for this hold few use to

impact the total testing process. These statements serve more as a way to see if development is

performed following agile principles and to see whether or not preliminary conclusions of the

analysis are valid. Results from individual statements will be highlighted where applicable throughout

this report.

Table 4-13 Survey Results: Statements pt1

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

49

Statement Expectance Result

1 Customers should write own
test plans

Agree Neutral - Agree

2 Customers test properly Disagree Disagree - Neutral

3 Customers need support
during testing

Agree AGREE

4 Customers should test at SME Neutral Disagree - Neutral

5 Customers are available for
context questions

Agree Neutral - Agree

6 Customers are involved in the
testing process

Neutral Agree

Table 4-14 Statements pt1 Expectance vs. Results

Table 4-15 Statements pt2

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

50

Statement Expectance Result

7 The current development planning
guarantees enough testing

Disagree DISAGREE

8 Testing occurs ad-hoc Agree AGREE

9 Testing is skipped/ severely
shortened upon endangered
development deadlines

Agree AGREE

10 Test execution is stimulated by
project managers

Agree Neutral - Agree

11 Feedback on own code via bugs
arrives soon enough

Disagree Spread

12 Testing receives enough attention Disagree DISAGREE
Table 4-16 Statements pt2 Expectance vs. Results

Table 4-17 Statements pt3

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

51

Statement Expectance Result

13 I am certain of effects of checked-in
code on application

Disagree Neutral - Agree

14 Amount and quality of testing is
highly dependent on developer
personality

Agree AGREE

15 Attention for testing degrades as
development progresses

Agree Spread

16 Influence of code changes on total
system behavior is underestimated

Agree Spread

17 Testing is performed without a
clear strategy

Agree Spread

18 Code is written to be testable Disagree DISAGREE
Table 4-18 Statements pt3 Expectance vs. Results

Table 4-19 Statements pt4

4
 C

u
rr

en
t

P
er

fo
rm

an
ce

52

Statement Expectance Result

19 Effects on the rest of the
application are unknown during
refactoring

Disagree Disagree - Neutral

20 Current unit tests test to large
chunks of code at once

Agree Disagree - Neutral

21 Less time required for bug fixes by
testing more nets less total
development time

Neutral Agree

22 I feel confident about bug freeness
of current delivered applications

Disagree Disagree - Neutral

23 When working with live code, tests
are executed more often

Agree Spread

24 Acceptance tests provide a proper
point of departure to see how
'done' the application is

Agree AGREE

Table 4-20 Statements pt4 Expectance vs. Results

4.2.4 Qualitative additions of overall testing process

Originating from held interviews and comments placed at survey questions (all survey questions held

comment options) a few general recurring qualitative remarks were made and are thus useful to list

here:

 Unit and integration testing is currently considered by project managers as developer’s own

responsibility, which in practice results in these hardly ever being run. Previous individual

attempts to begin these tests stranded due to difficulties with the many database couplings

of web applications that were found hard to unit test. Also currently earliest integration

practices take place when the developed software is at least at 80% complete.

 At the end of development there is a traditional separate testing phase, where time and

resources are reserved for testing. This testing is comprised of system (+integration),

functional and acceptance testing of the completed and integrated system, SME wrongfully

calls this a system test. This testing is guided by customer approved test plans that include

elaborate test-scenarios, however they are mostly of functional (use-case certification)

nature and test too large chunks of functionality at once.

 In general functional and user acceptance testing is executed to a very limited extent by

customers, mostly because customers to be handed over the ideal software package on time

with as little as possible involvement. This then results in less freed time for customer

employees to test the software. Next to this customers have very little knowledge of testing

and thus do not work in a structured way or at regular intervals.

 System testing is in practice only performed when developers or customers perceive slow or

malicious performance of the software at functional testing.

5
 B

es
t

P
ra

ct
ic

es

53

5 BEST PRACTICES
Several agile best practices have been identified via a structured literature study aimed at practices

from agile development methods. The aim was to find practices that address the main question and

underlying issues. The expected contributions to these goals per practice are attended at section

6.2.1 and thus won’t be handled here. This section and underlying sections elaborate upon possible

best practices, discusses their operation and propagates corresponding benefits for SME.

Section 5.1 handles Test-Driven Development as a key enabler for fewer defects in developed

applications as well as reducing total development effort. In section 5.2 Continuous Integrated

Testing – the support/enabler behind TDD – is shown. The rapid feedback loop and high project

visibility it supports, should improve development significantly. Section 5.3 provides useful metrics

for various development issues that need monitoring; this enables objective management steering

and provides more quality securities. Section 5.4 is dedicated to a proper environment that fosters

testing. The two notions the section hold originate from agile principles: (1) putting the customer

into the centre of attention, whereas all agile methodologies require intense collaboration between

developers and customers to create A-grade software. (2) Competence diffusion. For developers

were found to have limited knowledge of testing types and procedures, a quick comeback is

required. This can be achieved via stimulated spreading of knowledge.

5.1 Testing paradigm shift: XP’s Test-Driven Development
The first best-practice identified is XP’s Test-Driven Development (TDD), it draws from TDD practices,

but takes its practices to extremes. Section 5.1.1 shows its essentials (and extremes), while section

5.1.2 is all about its possible benefits for SME.

5.1.1 XP TDD in short

XP incorporates a new paradigm on testing. Where most (older) development methodologies show a

separate lengthy testing phase at the end of development, XP comes with a new volatile way of

testing – a paradigm even – : always test before coding. This powerful statement originates from the

concept of Test-Driven Development. (Beck 2002) Paraphrased to strengthen the statement: “Only

ever write code to fix a failing test”. (Koskela 2008) This test-first paradigm of TDD is best explained

using a graphic. Figure 5-1 shows the test-first design process is shown.

5
 B

es
t

P
ra

ct
ic

es

54

Figure 5-1 Test-first design process (Grenning 2001)

Clearly visible is the precondition of having tests before coding, but lacking in this picture is the

‘naturally regarded’ fact that when a developer thinks up a test while coding, this can and should be

added as well in the XP setting when he/she thinks the need arises. Testing up front can also be

regarded as an as analysis step, for one is required to clearly decide on what the code should do.

Next to demanding tests to be built first, XP states that all added code must have accompanying unit

and function tests, and integration / regression tests are executed as soon as possible (for

integration: when more than one components have functions that can be tested for integration, for

regression: as of the first available test) . Next to taking testing as leading over coding, the idea is to

automate as much tests as possible. When automated this provides possibilities to extremely

demand that for every added code sequence all previous tests must be ran and test scores must be

no less than 100%. In this way developers’ confidence will be greatly improved with every code

addition, after all: everything coded so far works completely, and if tests fail they immediately know

exactly where the fault lies!

Furthermore a unique feature of XP is that developers write their own tests, but soon this results in

the obvious statement ‘one can never test his own code as well as someone else can’, because of

losing some white-box16 advantages that only occur when self-writing tests. (Cockburn and Highsmith

2001) This statement can be refuted by another XP practice: pair programming, being two

developers coding on just one screen and keyboard. Along with many other benefits (not covered

here) hereof the chance that code faults are missed is greatly reduced by two minds working as one.

(Cockburn and Williams 2000)

16

 The developer that built a code piece knows the executed methods, dependencies and objects handled in the

code piece best, for he/she developed it his/herself and is the (sole) mind behind all design considerations and

decisions.

5
 B

es
t

P
ra

ct
ic

es

55

System and acceptance testing is performed by the customer under collaboration with analysts. At

the beginning of a development iteration the customer thinks up what would convince him that the

requirements for that iteration are fulfilled. These convincers are then converted into system wide

tests.

Sometimes here the need for aid of a developer / tester to empower the customer with coding

experience is needed. Because the customer has the most expertise and feeling of how delivered

applications must work – after all he knows/supplies the business logic – this isn’t performed in-

house.

For clarification Figure 5-2 below shows the relations of tests, code and actors:

Figure 5-2 Relations in TDD explained

The figure shows a division in two types of TDD, Acceptance Test Driven Development (ATDD) and

Unit Test Driven Development (UTDD). Where the former is concerned with building the right

application, the latter tries to build the software right.

5
 B

es
t

P
ra

ct
ic

es

56

In a typical development cycle the customer draws up acceptance criteria together with an analyst.

After agreeing upon these criteria, these are then converted to automated acceptance tests with

help from testers providing coding and test cases experience. As soon as the first automated

acceptance test – which guides further development effort – is in place the actual implementation of

the criteria/features is started. This enters the domain of UTDD. Every automated acceptance test is

covered by at least one unit test devised by developers themselves and supplemented by tester

experience when necessary. These unit tests than serve as input for actual code implementation

effort. When the implemented code passes all unit tests, the UTDD cycle is completed and the

feedback towards the ATDD cycle commences. The final step in the larger cycle is to make the

acceptance tests pass, when this is the case the customer criterion is considered met and the entire

cycle starts over from the beginning by supplying a new automated acceptance test.

5.1.2 XP testing: various benefits

Several authors report a variety of benefits when applying XP testing, while some aren’t directly

linked to quality as defined at section 1.3.2 they will be enumerated on the next page.

5
 B

es
t

P
ra

ct
ic

es

57

Benefit
category

Benefit Author(s)

Higher
software
quality

Higher testing frequency combined with immediate test
feedback increases software quality, because flaws are detected
earlier and more often as well as programmers retaining a
higher learning curve due to shorter feedback cycles.

(Beck 2000;
Erdogmus, Morisio
et al. 2005)

 Test automation improves software reliability, for automated
tests are executed more often and achieve higher accuracy than
manual ones.

(Maximilien and
Williams 2003)

 Requiring written tests upfront of coding raises programmer’s
and customer’s awareness of desired process outcomes, thus
improves insights on how following code must rise. Also better
insights in required functionality improve software quality.

(Erdogmus, Morisio
et al. 2005)

 Test-driven methods as XP report up to 50% reduction in defects
compared to ad-hoc testing, it also leads to less time needed in
manual debugging and thus reduces fault injections –the
probability of bugs in hacked debug code is over 40 times higher
than with original code – due to hack-based debugging.

(Maximilien and
Williams 2003;
Williams,
Maximilien et al.
2003)

Increased
develop-
ment
speed

With automated high coverage testing, at every code edit a
developer knows the new code works, for all test must run and
pass at every code injection. As developers know exactly when
they’re done (tests run and pass), they can move on to the next
task quicker.

(Jeffries 1999)

 Automated testing reduces total testing effort. (exact effect
unmentioned)

(Dustin, Rashka et
al. 1999)

 Less time spent fixing defects, for the reduction in defects
injection and earlier discovery due to very small development
cycles is bound to pay back.

(Koskela 2008)

Increased
customer
confidence

Increased involvement via continuous functional testing and
seeing results thereof increases confidence in functionality for
customers are convinced that their own tests pass and thus
have desired functionality.

(Beck 2000)

Increased
developer
confidence

Developer confidence in functional and system reliability
improves dramatically due to automated tests always require a
100% score and provide direct feedback to validity of checked-in
code. In ad-hoc – and mostly too late – testing, results usually
take days or weeks to get back at the original developer and
even then they provide limited insights in to where to bug
originates.

(McMahon 2003)

Table 5-1 Benefits of XP testing

5
 B

es
t

P
ra

ct
ic

es

58

N.B. XP TTD affects four out of six available test types. The two types unaffected are System and

System Integration Testing. But this isn’t problematic, for past SME development projects

haven’t dealt with many issues that could have been counteracted with these two testing

types. Observations proved that the current reactive attitude towards system performance

and integration problems suffices. A second reason for not being problematic lies in the fact

that the current development process is expected to improve (in terms of defect levels) most

by applying XP effected test types.

5.2 Beyond tools: Continuous Integrated Testing
The second identified best-practice is Continuous Integrated Testing, which extends Continuous

Integration (CI) with proper testing. First the concept of CI will be clarified in short at section 5.2.1,

after which full CIT will be shown at section 5.2.2. The CIT practice provides rapid feedback, which

ultimately reduces required time and money to detect and fix defects. Section 5.2.3 lists previously

observed benefits from various authors that should prove beneficial to SME. Section 5.2.4 ends the

information on the CIT practice. For it leans heavily on automated testing, this final section is

included to remind the reader once more of the possible pitfalls of automated testing. Also issues

corresponding with pitfalls of manual testing are mentioned in contrast. These are visible at SME.

This backs the notion of a needed change in testing.

5.2.1 Continuous Integration explained

Before discussing CIT an explanation on Continuous Integration is required. The primary explanation

of a typical CI scenario is supplied below:

1. A developer commits code to the version control repository. Meanwhile, the CI server on the

integration build machine is polling this repository for changes (e.g. every few minutes),

2. Soon after a commit occurs, the CI server detects that changes have occurred in the version

control repository, so the CI server retrieves the latest copy from the code from the

repository and then executes a build script, which integrates the software,

3. The CI server generates feedback by e-mailing build results to specified project members,

4. The CI server continues to poll for changes in the version control repository.

5
 B

es
t

P
ra

ct
ic

es

59

Figure 5-3 illustrates the parts in a CI system, as described by the foregoing CI scenario activities.

Figure 5-3 Components of a CI System (Duvall 2007) (adapted)

An expansive description of CI that won’t be handled here is available from one of its founding

fathers, Martin Fowler. Please refer to: Fowler (2006).

5.2.2 The CIT approach

“Continuous Integrated Testing is a combined development and testing methodology that enables

organizations to maximize the use of testing throughout the development process to increase overall

application quality. More specifically, CIT enables unit and functional tests to be run while profiling

the application code. It provides developers, testers, and managers with daily/hourly/minutely

updates of the performance and stability of the application in development. Rather than waiting for a

scheduled code release or predetermined date and time for checking the overall status and health of

an application, CIT can be used throughout the entire development phase to provide detailed,

granular analysis that highlights issues such as performance, memory or poor coding.” (Compuware

2006)

In short: CIT is a new approach for cost-effectively increasing both the number of testing cycles and
the resulting application quality while decreasing the amount of time it takes to find problems and
the cost to fix them (Compuware 2006; Fowler 2006; Haines 2008).

5
 B

es
t

P
ra

ct
ic

es

60

In traditional waterfall software development methodology, application testing is performed as a
separate development phase that starts no earlier than at completed development. At CIT however,
this testing is performed in parallel with coding development activities. The results are continuous
test cycles, enabling developers to isolate defects when they’re injected and take corrective action
immediately. Thus instead of developing large chunks of code and simply ‘pass it over the wall’17 to
testing, resulting in late and less effective tests to discover errors, now testing and coding forms a
synergy. This practice is sure to improve development.

CIT aligns developer performance tools with testing. Testing tools are used to create and regressively
execute tests while developing the application, enabling them with method and line-level details on
performance, memory issues or test code coverage.

When this process is automated and fused with developer performance tools, a
daily/hourly/minutely repeatable process can be forged that highlights issues introduced in that
timeframe. Despite an initial reaction that this practice will cost more time, it reduces testing efforts
due to eliminating defects at their roots, even before it touches other code under development. This
shortens testing thus reducing solving cost per defect.

5.2.3 A variety of benefits from CIT

Benefit Description Author(s)

Less defects Developers are empowered by continuous (testing)
feedback loops on integrated code that net a
significant reduction in defects.

(Compuware 2006;
Fowler 2006)

Detect and fix
defects earlier

Defects are easy to pinpoint, because of short build
+ test cycles and thus a limited area to look for
them; when testing several times a day, defects
are more likely discovered upon injection, instead
of at late-cycle testing; amount of assumptions to
test is reduced by limited search window; defects
are always reproducible; find bugs that are
(practically) impossible to find manually; error
status monitoring, CIT allows for auto-entry into
defect trackers and metrics, which aids early fixing
of defects.

(Dustin, Rashka et al.
1999; Fewster and
Graham 1999;
Compuware 2006;
Flowers 2006; Fowler
2006; Duvall 2007)

Less development
time

Defects are found earlier when they are less likely
to be compounded; automated execution saves a
lot of costly testing team time and increases test
numbers; test case generation and recording tools
speed up test creation; decreased debugger time;
testing doesn’t require traditional code freeze.

(Dustin, Rashka et al.
1999; Compuware
2006; Flowers 2006)

Less costs Bugs are discovered and corrected immediately,
instead of weeks or months later, saving costly
debugging costs.

(Compuware 2006)

17

 Forwarding code without proper comments or any other form of communication, let stand collaboration

between development and testing actors.

5
 B

es
t

P
ra

ct
ic

es

61

Benefit Description Author(s)

Gap development
 QA bridged

The CIT process takes down the wall between
development and testing. The new structure of
development requires developers to become part
tester and vice versa thus creating collaborations
and mutual respect; also the use of common
testing tools creates synergies between
Development and Quality Assurance.

(Dustin, Rashka et al.
1999; Compuware
2006)

Measurable quality CIT process monitors health attributes such as total
build status, quality metrics, defect rates and
completion rates; problematic areas are
automatically highlighted at every change or
compile and trends are visible early on; automated
tests procedures can be measured and repeated,
this allows for previously (manual) hard to reach
analysis and optimization; automated tests provide
easy and adequate reports.

(Dustin, Rashka et al.
1999; Compuware
2006; Duvall 2007)

Deploy at any time CIT’s short integration cycles allows for (almost)
immediate deployment of working builds

(Flowers 2006;
Fowler 2006; Duvall
2007)

More higher-ranked
development time
available

Reduces repetitive manual processes; Continuous
testing reduces variance in defect arrivals,
decreasing frequency of rush jobs in bug fixing; test
playback can be unattended

(Dustin, Rashka et al.
1999; Fewster and
Graham 1999;
Compuware 2006;
Duvall 2007)

Raised confidence in
application

With every build an extensive set of tests should
pass, immediately showing the current build status
to developers

(Fewster and Graham
1999; Duvall 2007)

Table 5-2 Benefits of CIT

5
 B

es
t

P
ra

ct
ic

es

62

5.2.4 Remarks on automated testing

While the previous section has pointed out a variety of benefits from applying CIT, some limitations

of the automated testing it holds do apply and deserve at least a mentioning here: (Fewster and

Graham 1999)

 It does not replace manual testing: tests that shouldn’t be automated are the ones being (1)

rarely run, (2) where the software is highly volatile, (3) where the result is easily verified by a

human instead of a test script and (4) ones that require physical interaction.

 Manual tests uncover more defects than automated tests: because tests most likely reveal

defects in their first run. Automation only re-runs tests and thus are less likely to discover

latent defects. Nevertheless, an extensive experience report by James Bach shows that

automated tests find 15% of defects, not uncovered by manual testing. (Bach 1997)

 Greater reliance on test quality: Because a tool only compares actual to expected outcome, it

becomes a greater burden to verify the correctness of expected outcomes. A tool will happily

report pass on a test, while it has only verified a match in expected outcome.

 It doesn’t raise effectiveness: automated tests aren’t more effective than their manual

counterparts. Automation only improves efficiency (costs and time).

 It may limit development: Automated tests are more fragile than manual tests, they can be

broken by minimal changes to the tested application. When written properly this fragility can

be countered. (Currently at SME a team is busy defining a template how to create proper

tests which should counter this limitation)

 Tools have no imagination: A tool is just software, and thus only obediently follows

instructions. It holds no creativity and cannot adapt to exceptions in execution or situational

conditions as humans can.

Then again manual testing suffers from several issues as well: (Crispin and House 2003)

 They’re unreliable: Under schedule pressure, quality of testing decreases. Developers/testers

start to cut corners, omit tests, and miss problems. A quote by Lisa Crispin shows than when

using automation with immediate result feedback keeps people from doing these undesired

practices: “The warm comfy feeling the manual tests gave us by promising to keep defects

from getting through to the customer is replaced by the burning flames of perdition”. Next to

manual testing under individual developers creates unwanted high variety in test quality

level.

 They undermine proper development: Developers keep tests to themselves or even skip on

them completely, manual tests are practically impossible to verify if they’ve been executed

or even designed.

 They’re divisive: Manual tests are very personal, when you discover a defect with a manual

test, you found the defect. When you miss one, you missed it18. If someone misses something

when stakes are high, it’s the person doing the test that failed. He should have seen it, even

if he was distracted, under pressure, etc.. This kind of atmosphere is unwanted in a project,

and can be avoided by automating the test.

18

 Pardon my phrasing, the statement made here is only perceivable in a dictating personal phrasing.

5
 B

es
t

P
ra

ct
ic

es

63

The aforementioned manual testing issues are visible at SME as well (and have been shown at

various places in this report), which strengthens the case for automation.

5.3 Metrics: A new set of performance indicators
At SME the only current internal software quality performance ‘indicator’ is the project managers’

gut feel originating from the bug arrival rate. This calls for high uncertainty. To counter this

uncertainty and at the same time move from subjectivism to objectivism a set of direct and indirect

performance indicators is suggested further on as the third best-practice. The developed measures

will provide project managers as well as developers with a simple means to evaluate current

software reliability standings and to enable them to steer on test amounts and quality. (Jones 1997)

Jones also states that there is a perfect correlation between being able to measure and to estimate,

for planning and estimation are the mirror images of measurement. So not only current testing

performance will be clarified, but also what the future holds on software quality.

Via a systematic literature search a diversity of testing performance indicators was uncovered. These

indicators will be enumerated below, combined with a discussion about their usability. They have

been selected to fit business goals (1) improve quality (reduce total defects), (2) find and fix defects

closer to their origin, (3) predict find and fix rates pre en after release, and (4) allow for comparison

to earlier development results.

Next to required alignment with business goals, the criteria for selection were:

 Easy to comprehend

 Macro view

 Relevant to the testing process

 Driving improvement

 (Technically) measurable

The number of selected metrics was also kept at a minimum yet adequate level to guarantee test

process improvement, and to prevent micromanagement and bureaucracy, which suits the agile

approach and corporate identity at BPT. The selected metrics set corresponds to business goals:

Metrics to be implemented are split into direct measurements of test activity levels, measurements

of arriving/remaining defects and overall testing performance. The first and second categories both

hold two metrics and the latter limits to one metric. (Variations on metrics aren’t included in this

count). This total package of five indicators should provide SME with the tools to steer internal

testing activities and quality and at the same time deliver a means to show customers a reasonable

indication of the quality level of their software. Sections 5.3.1 - 5.3.3 show the suggested metrics.

Final section 5.3.4 holds some insights for SME to know when to stop testing, and shows why this

research hasn’t exhaustively researched all possible methods to decipher the point of enough

testing.

N.B. Results of this chapter rely heavily on the work of Kan (2003), who provides a detailed

overview with adoption recommendations on currently available software development

metrics and makes recommendations for adoption on a variety of metrics. Where necessary

their work is supplemented by opinions of other authors.

5
 B

es
t

P
ra

ct
ic

es

64

5.3.1 Measurements of test execution levels

The first category of indicators deal with the monitoring of current testing levels. Structurally dealing

with testing levels improves software reliability. (Maximilien and Williams 2003; Williams, Maximilien

et al. 2003; Erdogmus, Morisio et al. 2005) To that extent two metrics were uncovered fit for SME

use. These are the measures ‘code coverage’, highlighting the fraction of code covered in tests , and

‘Test Progress Curve’ showing the buildup in performed tests with accompanying results thereof.

When used in combination, this will result in a simple yet precise overview of what was tested and to

what amounts. This raises reliability of developed software through steering on adequate amounts of

testing and raises trust of developers as well as project managers in the code due to having access to

an easy overview of current standings (metrics read good or bad in terms of quality or schedule)

(Kan 2003).

5.3.1.1 Code Coverage

Code coverage is divided into two coverage types. Edge coverage reports which branches or code

decision points were executed to complete the test. Line coverage reports on the execution footprint

of testing in terms of which lines of code were executed to complete the test. Both tests report a

coverage metric in the form of a percentage.

Figure 5-4 Sample Code Coverage

These two coverage metrics should provide a simple and thorough way to see if all parts of the code

have been tested at least once.

Purpose of these metrics is to show what isn’t tested, to focus upon writing new tests to check

missed code parts. Also it is easy to set target levels of test coverage, to force developers to write

more tests when achieved coverage levels are found lacking, or to show that test levels are on or

even over target.

However, caution needs to be exercised upon usage however as Marick (1997) argues:

Code coverage should be used for performance management, but only in retrospective. Thus this

metric cannot be applied solely to lead test design, but is used better in evaluation.

This warning is due to two apparent notions: (Marick 1997)

5
 B

es
t

P
ra

ct
ic

es

65

First the notion that tests required for proper testing always amount to more than the ones required

for coverage goals. Tests that don’t necessarily improve code coverage are required as well. This is

due to the way bugs behave. Bugs that occur independent of how the code is executed, will always

surface (and thus will be found using coverage). Bugs that depend on interoperation or only surface

in specific conditions will require redundant tests in terms of coverage metric demands. In short:

tests only satisfying code coverage demands are never enough for proper testing.

Second notion is that of cutting corners under pressure. People will – especially under pressure –

supply exactly what you measure. This implies tests only being written when they raise code

coverage towards the set target, even if they’re of bad quality and are less likely to reveal defects

they can fool the metric’s purpose.

To counter these aforementioned possible risks of applying code coverage as a way to see ‘how

done’ testing is, the following guidelines from the ‘Certified for Windows Logo Procedure’ should

make the difference: (Bach 1998)

The following supplementing test coverage requirements should always apply:

 Test all the primary functions that can reasonably be tested in the time available

 Test a sample of interesting contributing functions

 Test selected areas of potential instability

Applying the supplementing demands, next to the original quite elementary code coverage metric of

simply a percentage of coverage, should make a fit for use metric. The general metric will function as

a blunt way of seeing if test case numbers are adequate, while the additional requirements function

to keep test design quality high.

5.3.1.2 Test Progress Curve (Planned, Attempted, Actual)

This test cumulatively tracks the number of test cases over time. The resulting ‘S’ shape is a result of

a period of intense testing activity causing a steep ramp up in planned tests. The graph shows:

 Planned number of test points to be performed successfully per week

 Number of test cases attempted per week

 Number of test cases completed successfully per week

5
 B

es
t

P
ra

ct
ic

es

66

Figure 5-5 Sample Test Progress S Curve (Kan 2003)

Purpose of this metric is to track test progress and compare it to the plan, and therefore be able to

take action upon early indications that testing activity is falling behind. It is well known that when the

schedule (often!) is under pressure, testing is affected. With this metric in place, schedule slipping is

much harder for the team to ignore. For instance a disparity target of 10% between attempted (or

successful) and planned can be used to trigger additional actions. Another purpose is that it forces

planning for numbers of test case upfront and demands testing to be performed continuously

instead of at the end of the programming cycle. A final application of this metric could be that of

release-vs-release or project-vs-project comparison to compare quality and schedule. This metric is

best suited for unit / functional tests.

5.3.2 Indirect measurements of code quality through defect analysis

Next to test reach and effect measuring also defect arrival tracking is relevant to quality measuring.

For instance even with the same overall defect rate discovered during testing, different patterns of

defect arrivals may imply different scenarios of field quality. Two additional indirect metrics have

been identified to improve testing even more, divided into defect arrival and defect backlog tracking.

5.3.2.1 Testing Defect Arrivals over Time

This metric tracks the number of defect arrivals over time. On the X-axis the weeks before product

ship are listed, with accompanying Y-values as the number of defect arrivals for the week.

Like with earlier mentioned metrics, this metric can also be customized to show separate

development phases or defects discovered by different test types. Differentiation is also possible to

show differences in defect severity or instead of absolute values, customized to show relative

arrivals. Another very useful variation shows defect origin, when all defects are awarded to their

origin it becomes easy to see where most mistakes are made and undertake actions to prevent this

from happening again. Figure 5-6, Figure 5-7, Figure 5-8 and Figure 5-9 show the main graph and

three possible variations.

5
 B

es
t

P
ra

ct
ic

es

67

Figure 5-6 Sample Testing Defect Arrival Metric (Main) (Kan 2003)

Figure 5-7 Sample Testing Defect Arrival Metric – Percentage of Severity 1 and 2 Defects (variation) (Kan 2003)

When transforming the weekly arrival curve (density form) to a cumulative form, the curve becomes

a well-know form of the software reliability growth pattern. This graph can be used to estimate the

latent defects between Product Ship Date and when the curve approaches its limit. See below for a

visual representation.

5
 B

es
t

P
ra

ct
ic

es

68

Figure 5-8 Sample 76

Testing Defect Arrival Curve, Software Reliability Growth Model, and Defect Projection (Kan 2003)

There are also authors that state this ‘S’ shape could very well be in another form, namely following a

Weibull, Log-Logistic or Exponential distribution (example see: Figure 5-9 and for a comprehensive

review of available functions see: Wood (1996)). So far the real shape is undecided in literature, or

could very well be different at every development project. Gokhale and Trivedi (1999) state to use all

possible distributions and determine which one best fits the development data (read: historical test

coverage) of the software using goodness-of-fit, bias and bias trend indicators.

Figure 5-9 Sample Testing Defect Arrival Curves of other distributions (Gokhale and Trivedi 1999)

5
 B

es
t

P
ra

ct
ic

es

69

The use of incorporating historical coverage data in the prediction model is that to filter too

optimistic predictions originating from inaccuracies in operational profile and the saturation effect of

testing. Usage of an attribute of the code (here coverage) helps to counter effect this optimistic

trend and thus improve prediction accuracy.

A critical note needs to be made however for the use of the bug-curve model. (Kaner and Bond 2004)

Bug curve models are based upon several assumptions that are violated too often. On the next page

the assumptions and their violations are listed.

 Detection rate is proportional to current defect content. Some defects are harder to find than

others, also testers change testing techniques as the application in development becomes

more stable, changing from easy tests to complex tests with many variables.

 Defect detection rate remains constant. When test techniques, staffing, or focus changes, the

detection rate is likely altered.

 Instant and always proper bug-fixes. What would be the purpose of regression testing if this

was the case?

 All defects are equally likely to be encountered. Of course fundamentally implausible. While

some are almost impossible to miss, others occur only at borderline situations.

 The application holds a fixed and finite number of defects at testing start. This holds only in a

utopian world, where no new bugs are introduced upon fixing others and when no code is

added as soon as testing has started.

 All defects are independent. Defects often hide others.

 The number of defects discovered in one interval is independent of detection numbers at

others. See: defect detection rate remains constant.

There are other questions to be placed at the validity of defect prediction models, comprehensive

reviews of these prediction models including critique is found in Fenton and Neil (1999) and Wood

(1996). For the coverage-based prediction model as shown above some promising results do have

surfaced. See: Veevers and Marshall (1994) and Gokhale and Trivedi (1999) Please keep in mind that

these are promising, yet inconclusive. The authors that report on its effectiveness stress this fact.

Overtaking the applicability discussion, another variation upon the previous metric could serve a

different purpose. Uncovered defects can be represented by a histogram (here in pareto form) of

total defects per origin or severity (pie chart is also a possibility). See Table 5-3 and Figure 5-10. This

can provide useful insides in what area of testing results perform well and where they are slipping

and thus need extra attention.

5
 B

es
t

P
ra

ct
ic

es

70

Severity level

 Defect Origin 1, % 2, % 3, % 4, % Total, %

Severity Legend

Requirements 5 5 3 2 15

Level Description

Design 3 22 10 5 40

1 System or program inoperable

Coding 2 10 10 8 30

2 Major functions disabled or incorrect

Documentation 0 1 2 2 5

3 Minor functions disabled or incorrect

Bad fixes 0 2 5 3 10

4 Superficial error

 Total Defects 10 40 30 20 100
 Table 5-3 Sample Defects per Origin and Severity (Jones 1997)

Figure 5-10 Sample Defects per origin Pareto (Jones 1997)

5.3.2.2 Testing Defect Backlog over Time

This metric tracks the defect backlog over time. It does this by crafting a graph out of the weekly

number of open defects. (=arrivals – closed) Defect backlog tracking and management is important

from the perspective of both test progress and customer rediscoveries. A large number of open

defects during development will hinder test progress. Also when a release is shipped to a customer

with a high defect backlog there increases the likelihood of rediscoveries of defects found in earlier

development.

5
 B

es
t

P
ra

ct
ic

es

71

Figure 5-11 Testing Defect Backlog over Time (Kan 2003)

Purpose of this metric is to prevent high backlog especially when close to a release date. It is suited

to set targets to help encourage developers to fix bugs and so reach low backlog.

N.B. A final note on defect arrival metrics is at order here. Three gaps in the measurement of these

metric exist that need to be taken into account: (1) Private desk checking of defects by

developers themselves, (2) defects found during private unit testing, (3) defects found during

informal reviews by friends or colleagues. The result of these gaps is that the ‘official’ bug

arrivals are always smaller than real arrivals. The exact effects of these gaps on the metric

haven’t been documented before and are unlikely to be uncovered in the future, due to (too)

stringent measurement demands (endless defect reporting discipline) to fill these gaps.

5.3.3 Overall performance of testing

Previous metrics focused on measuring actual execution of tests and analyzing defect rates. The

metric handled in this section shows whether or not current testing at SME is fit for the job of

discovering defects.

5.3.3.1 Defect Detection Percentage

Wherever an application is developed, defects are inserted. The better the testing, the less bugs will

remain latent till operation. Defect Detection Percentage (DDP) is a measure to show how testing

has performed in a retrospective way. DDP is the percentage of the number of defects found in

testing, divided by the number of total known defects. (Total known defects = defects found in

testing + defects discovered afterwards) Of course a 100% score is best, where all defects were

uncovered in testing, but this remains a utopian state.

Although this measure only provides valuable insights at the end of a development project (DDP will

yield imbalanced results when applied when still very few defects are uncovered), it definitely has its

use. It enables monitoring whether or not testing has performed over time and thus serves as a

metric to see whether or not previously taken measures to improve testing have worked out or as a

starting point to set new measures for the future, i.e. aiming for higher effectiveness.

5
 B

es
t

P
ra

ct
ic

es

72

This metric can also be customized to provide deeper insights in detection effectiveness, by

measuring DDP per testing type (i.e. the seven testing types of section 4.2.1). However be wary of

the implications this has for data collection, for every defect has to be properly appointed to a defect

detection stage where it should have been caught, and often this is particularly hard to do due to

defect complexity.

5.3.4 Special case: When to stop testing?

A special case of importance for SME concerning metrics is to know when to stop testing, for less

testing leaves too much hidden bugs, and too much testing is costly and less effective. An optimal

breakpoint thus is needed. There are several ways to decide when this breakpoint – the desired level

of quality / testing – has occurred. Some are currently in use, but these should be supplemented to

have an improved estimate on when to stop testing. Above two of these supplements have been

mentioned, code coverage and test progress curve, but there are others. The complete list of stop

metrics:

Stop metric Description

Agreement-based Development team and customer agree on what
to test and on quantities

Effort Fixed amount of time / tests

Coverage Minimal percentage of functions covered in tests

Project-history based Estimate future by looking at the past

Risk-based Parts of the application are awarded a risk and so
high risk is tested more intensively than low risk

Table 5-4 Stop metrics

N.B. These extensive stop criterions are excluded here due to parallel research and primary project

usage by a new tester at SME. Also this would imply digging in too deep into metrics instead of

improving software quality (this research’s goal). Please refer to Kaner (1996) for an extensive

list of metrics per category.

A final practitioners note for improvement of the ‘when to stop’ trade-off is to apply a mixture of

stop metrics. The currently observed limited Agreement-based approach – agreement on who does

what, but lacking in what quantities of testing need to be performed – that comes down a fixed

effort test schedule should be supplemented. Supplement the trade-off decision with minimal test

coverage requirements per component and increase coverage and test cases at high risk application

parts. This should form a base for testing towards becoming a true development phase instead of the

mere shell thereof currently in effect. (Kaner 1996) concurs on applying a mixture of stop-metrics to

obtain best trade-off results.

5
 B

es
t

P
ra

ct
ic

es

73

5.4 Setting a testing atmosphere
This section is about setting the right atmosphere that nurtures testing. While the two principles

described in the following underlying sections aren’t testing best-practices, they do hold some

valuable intelligence concerning change management that belongs in this report. They are (or should

be) valued in any agile development environment. The two principles, customer involvement at

section 5.4.1 is about seeing customers as team players instead of contract negotiators and at

section 5.4.2 several ways to speed up testing skill distribution amongst developers are mentioned.

N.B. this section is held brief, for a literature research into change management would be required

to cover all aspects of setting a changing process atmosphere. This research targeted the

assessment of the current situation and sketches a desired future state, the transition is

considered beyond content.19

5.4.1 Customers: high(er) involvement

All agile development methodologies take customers involvement to another level. They’ve changed

customers’ interaction. Instead of negotiating over contracts, the focus is shifted towards

development collaboration. Direct communication is marked of highest priority. That’s needed, for

customers have more power in what features will be available next release and are required to

perform more acceptance testing. The agile development practice SCRUM holds story/feature

meetings and daily stand-ups where customers should be represented. Please refer to Schwaber

(1995) for a more detailed overview of its practices and implications for development.

5.4.2 Developers: diffuse knowledge

In order to get both developers and customers up to speed on testing, extra attention is required.

Learning from each other needs to be set as a key value. But that isn’t enough; to get real results

continuously reinforcing this principle during development activities is required.

A couple of measures to support this undertaking have been selected (but a lot more are available):

Have test templates available for developers less experienced in testing, to have a quick start kit

from which they can expand to their own templates. These templates then again need to be shared

and reviewed with others and so an evolving pattern of templates will start to emerge.

Hold workshops promoting and informing test types and supporting tools available. This is an easy

way to let developer familiarize themselves with testing in a Greenfields setting. An open dialogue

will also be able to take away any remaining reluctance to test usage or knowledge lacks.

Apply – or at least start with – as pair-wise test writing. A noticeable quote of agility guru Scott

Ambler (2006) shows the core message clearly: “Pair testing, just like pair programming and

modeling with others, is an exceptionally good idea. My general philosophy is that software

development is a lot like swimming – it’s very dangerous to do it alone.”

19

 For interested readers on making this transition, search literature using keywords ‘Software Process

Improvement / SPI’ and ‘Change Management’ or contact the author for a quick start list.

6
 D

is
cu

ss
io

n

74

6 DISCUSSION
This chapter is split into the traditional sections Conclusion, Recommendations and

Limitations/Future Work. At section 6.1 findings on the current testing situation are summarized.

Section 6.2 holds the recommendations for a future SME in testing. In section 6.3 the best-practices

are found to cover all required aspects, solve listed testing issues and improve overall software

quality. Lastly section 6.4 covers exit clauses together with future research possibilities and interests.

6.1 Conclusion: testing severely underexposed
Testing proved to be severely under applied at SME. The outcome / effort model shows SME scoring

a ‘Unsure’ or ‘Worst-Case’ score, which denotes inferior performance. The interviews and surveys

back the lack of test types and underlying principles application, like automation and regression. The

respondents of the held survey furthermore rank testing as inadequate for the task by grading

testing activities a 5.2 on average and 71% scoring testing as falling short. The high variety of issues

as gathered during this research’ formulation were also proven to be present. After examining the

testing process in more detail, it was uncovered that there is hardly a testing process in effect, except

for some functional and acceptance testing. All this demarks a gap towards application of state-of-art

testing procedures and correlating software quality. Luckily this was expected somewhat at SME,

which makes these notions somewhat less harsh.

Findings show that there’s much to be gained easily, a handful simple metrics can provide project

managers with the power to monitor and steer upon proper testing. Combined with the available

benefits of TDD and CIT, this will allow SME’s software development process to improve. The

transition towards enhanced testing will take time and effort, but fortunately all consulted SME

developers and analysts agree that the current standing is inadequate and they are willing to change.

This healthy open and change willing culture will provide a sound basis for implementation of the

recommendations. Please refer to section 6.2.2 for a short overview of actions that can be taken to

aim for better software trough better testing. But please keep in mind this research has devoted little

attention to implementation trajectory, for the follow up master’s thesis research will cover the

actual implementation of best practices.

6.2 Recommendations
The underlying sections below cover two aspects of best-practice adoption. The first – section 6.2.1 –

explains that the identified best-practices shouldn’t be regarded as alternatives, but more as

subsequent improvements to be implemented. The route to follow is (1) Metrics, (2) TDD and (3) CIT.

The second – section 6.2.2 – argues for the best-practice implementation path best followed as

regarded by the author of this research.

6
 D

is
cu

ss
io

n

75

6.2.1 Best-practice adoption, not which but in what order

This section should – according to the research questioning – cover what best-practice(s) to adopt,

but instead this question is rephrased to “In what order should the identified best-practice(s) be

adopted?” This is because the original research question was found to be obsolete. This is due to two

reasons: (1) All best-practices were shown to be useful / high on potential benefits, are relatively

easy to apprehend, have countless empirical examples, and their agile background should fit SME’s

mentality fine. (2) Jones (2000) states there are no coincidences in the order of Software Process

Improvement (SPI)20 practices that are implemented. As his extensive benchmarks amongst 500 U.S.

businesses prove, there’s a fixed order in which SPI is performed:

Stage Activities
0 Software process assessment, baseline, and benchmark
1 Focus on management technologies
2 Focus on software processes and methodologies
3 Focus on new tools and approaches
4 Focus on infrastructure and specialization
5 Focus on reusibility
6 Focus on industry leadership
Table 6-1 7 stages of software process improvement (Jones 2000)

Jones (2000) identifies several stages of SPI where each stage holds its own focus activities. The first

stage is an analysis stage to determine current standings of development quality. The following

stages are therapeutic and aimed at curing weaknesses found at stage 0. The stages that are of

current matter to SME (0-3) will be elaborated upon. Stage 0 is primarily a diagnostic phase that

identifies strengths and weaknesses. Stage 1 focuses on supporting management issues of

justification in investment on SPI with tools and training, only when management is up-to-date in

calculating ROI of future process improvements the following phases can/will be executed. Stage 2

involve introduction of specific process methodologies. An example here is the requiring of formal

design and code inspections. Stage 3 calls for heavy investment in time and people for using new tool

suites.

The current performance analysis in this research sticks to stage 0, which holds a diagnostic phase

that identified baseline performance and made a process assessment (benchmark comparing SME to

other businesses wasn’t applied). Recommendations for best-practices of this research fall under

stages 2 and 3. Stage 1 is missed somewhat due to being out-of-focus with this research’ goals.

However some metrics are introduced improve project managers’ grip on the software quality

process.

Stages 4 through 6 are still out of reach for current research as well as SME practices, for they require

lower levels to be present and able that SME still lacks.

Following Jones’ (2000) logic, the only legitimate order to rollout the aforementioned best-practices

would be: (1) metrics as a management technology enabler (stage 1), (2) TDD as a development

methodology (stage 2), and finally (3) CIT as methodology towards tooling (stage 3).

20

 Continuous and iterative improvement of software development practices

6
 D

is
cu

ss
io

n

76

6.2.2 Stepwise improvement via three consecutive best-practices

To get SME to an acceptable level of testing, the following steps need to be taken to enable a test

fostering development process.

Start by setting up measurements of current defect and test execution performance. Parallel to that

set targets for test levels and appoint responsibility to reaching these. Switch from individual to team

responsibility for the code base and adjoining tests. This should make testing efforts more visible,

controllable and avoids personal pitfalls of working under high pressure. Next thereto developers will

learn from each other by looking into each other’s tests. (Currently a first-start template package for

developers is under development by a test group)

When this is starting to make sense, switch towards UTDD, aiming for high levels of unit and

functional tests. Use pairing as a fast way to diffuse test knowledge (full pairing is out of the question

for now when discussing the subject with project managers), or arrange formal test reviews to the

least.

When developers start to feel as testers and embrace testing everything they code, attach

automated test suites to the build and version management servers (CIT principles). Let the

developers only check in code that is accompanied by tests. These tests run along with every build,

showing (integration) defects as soon as they’re introduced. By the time this is becoming reality the

amount of defects missed during development should have been greatly reduced. Not only will this

save countless hours in debugging, but also the costs of delivering too late, and extra personnel

hours to patch things up again.

Finally, after internal testing levels are found to be acceptable, shift testing focus towards the

customer. Instead of the current strictly separated responsibility of acceptance testing, which lies

completely at the customer, aim for collaboration instead of mitigating responsibility (and thus risk).

This collaboration could very well take place by applying ATDD. This enables earlier and more

accurate acceptance testing.

6.3 Issues and main question revisited: improvements throughout
This section serves as a reflection upon this research to see if testing issues and the research

questions are solved to satisfactory levels. This is the case in both following reflections. First the

issues will be revisited at section 6.3.1 where after a positive reflection upon the main research

question will follow at section 6.3.2.

6
 D

is
cu

ss
io

n

77

6.3.1 All issues covered

Table 6-2 shows the effects of the best-practices on the test issues of SME. As the table verifies, all

issues are adequately covered by the recommendations of this report.

Issues
Best-
Practices

Effects

Uncertainty about
software quality

XP’s TDD

CIT

Metrics

Writing tests for every code piece will feel like assured quality
at developers, project managers and customers
Green lights of the test suite feedback at every build shows
development is on track
By keeping track of various quality indicators, quality can be
proven

Software quality can’t be
proven

XP's TDD
CIT
Metrics

See previous issue commentary
See previous issue commentary
See previous issue commentary

Software defects (or
bugs) are uncovered too
late in the development
process

XP’s TDD

CIT

Metrics

More tests raise odds of defects being uncovered early,
especially tests being written upfront speed detection
Integration and regression tests combined with a central
testing repository will show reintroduced bugs or
malfunctioning other parts due to check-ins immediately
Metrics show defect discovery trends, which indirectly aid
detection due to (corrective) measures being taken

Testing activities cripple
under new-feature
pressure

XP's TDD

CIT
Metrics

Testing is demanded upfront of coding, so testing is
guaranteed to persist
At worst case scenario existing auto regression tests will run
Metrics lay a base for performance targets, which will include
required testing levels. This can function as a safety net for
testing to occur

Unknown testing effort XP's TDD

CIT

Metrics

Everyone writes tests for every code, so there is at least a
major effort
The central code repository holds tests as well, automated
reports show exactly what tests run and how they score
Trends are visible throughout, including a metric for test effort

Lack of vision on testing XP’s TDD
CIT
Metrics

TDD goes beyond vision; it is a new testing paradigm.
Automation, centrality and regression are new values.
No direct effect

Lack of testing
responsibility

XP's TDD

CIT

Metrics

All code is forced to have an accompanying unit/functional
test. Individuality is swapped for team effort, increasing
cohesion to responsibilities.
Central repository makes for team effort in testing, instead of
individuality while at the same time showing exactly whether
or not code has adjoin tests and thus serves as a way to reflect
upon responsibility to write tests.
Metrics can be used for target test levels verification, thus
reflecting upon test responsibilities.

Table 6-2 Effects of best-practices on current testing issues

6
 D

is
cu

ss
io

n

78

6.3.2 Software quality sure to improve

Now it’s time to revisit the main research question of this research, to see whether or not it’s been

solved:

‘How is the testing process to be improved to raise software quality?’

It’s safe to say the how has been answered thoroughly by showing gaps in current test performance

and providing three best-practices to counter these shortfalls.

As for the reflection upon the foretold rise of software quality: Software quality was defined earlier

(see: section 1.3.2) as delivering software with less defects. Kan (2003) has published a clear view

upon the Rayleigh Model. This model shows the distribution of defects over time and what forces

can reduce the defect rate. Two forces improve software quality: (1) reduce error injection and (2)

early defect removal, which is a combination of discovery rate and removal efficiency improvements.

The typical Rayleigh Model Curve of software development is depicted below:

Figure 6-1 Sample Rayleigh Model (Kan 2003) (adapted)

The figure above shows a sample of outstanding defects over time in a typical development process.

The red area depicts a buggy process, while the green and smaller area signifies an improved process

with reduced total injection rates (top curve green << top curve red) and earlier defect removal

(decline of outstanding defects occurs earlier in the development process at green over red).

Together these forces amount to reduced total defects (area green << area red).

6
 D

is
cu

ss
io

n

79

So, to reflect upon raising software quality these two forces need to be checked for occurrence in the

best-practices. See Table 6-3 below. Both forces are adequately covered, so it is safe to say the main

question’s contents have been handled in this research.

Defect Rate
Improvement Forces

Best-
Practices

Effects

Reduce Error Injection XP’s TDD

CIT

Metrics

By demanding tests upfront, developers are forced to think
harder and earlier about the proper implementation of
features; less error-prone debugging required
Reduces barriers development QA21, synergies in test
and development knowledge occur
No direct effect

Early Defect Removal
(Discovery Rate +
Removal Efficiency)

XP's TDD

CIT

Metrics

TDD shortens feedback cycles and greatly enhanced test
quantities by demanding tests upfront for all code
Integration and regression principles ensure that defects are
uncovered immediately when defects are (re)introduced;
shortened feedback-cycles; previously manually
indiscoverable bugs are found with automation; auto-entry
of defects in trackers improve removal reaction speed
While not so much helping directly, the trends originating
from metrics do show how the defect discovery and
removal rates behave and can form a reason for
intervention

Table 6-3 Effects of best-practices on software quality (here: defect rate)

6.4 Limitations and future work
This section holds two underlying sections. The first entails the limitations to research conclusions

while the second shows proposes and promising future research possibilities.

6.4.1 Limitations

Several limitations hold for (the conclusions of) this research, these are enumerated below:

 The research was targeting the development process and mostly at the testing phase(s)

thereof, but not from a total software quality view. In this same context, pre- (and post

somewhat) testing defect injection reduction and removal activities aren’t included.

 Functioning of the proposed best-practices in reality remains partly unknown, although the

identified best-practices should increase test performance.

 The research only covers lean / agile methodologies and supporting tools, traditional

frameworks were excluded.

 This research only covers immediately applicable and needed actions, further steps in the

Software Process Improvement trajectory haven’t been analyzed, at maximum mentioned.

 While this research shows best practices that should improve software quality, effort and

monetary implications for their adoption is deemed out of scope. Before adopting (one of

these) best-practices a full business case needs to be performed, carefully weighing costs

against benefits.

21

 Quality Assurance, or in this case: testing.

6
 D

is
cu

ss
io

n

80

6.4.2 Future work

This research covered a wide range of testing aspects and solutions. For the immediate future several

possible activities have been identified:

This research has identified several benefits that could (or should!) improve software quality. But

before putting these to the test, an objective and thus quantified measurement of software quality is

needed to see improvements arising from the package adoption. This implies performing a

comprehensive baseline measurement with the identified new to implement metrics. When this

baseline has been established, rollout of best-practices may commence. During that time

measurements on these metrics need to remain intact.

Second recommended future practice is incorporating more phases of software development into the

baseline measurement and following SPI , for software quality is not only dependent on testing

quality but also on other development phases. In this light testing should be viewed as part of defect

removal operations, proper requirements and design inspections will net high removal rates (higher

than those in the tests covered in this research) All tests applied in together and in full effect max out

at 70% defect discovery. (Jones 2000) The following table depicts possibly to be researched practices

beyond testing that can improve software quality:

Technique Author(s)

Defect Prevention

Examination of constraints (Dustin, Rashka et al. 1999)

Prototypes (Jones 2000)

Early test involvement (Dustin, Rashka et al. 1999)

Use of process standards (Dustin, Rashka et al. 1999)

Inspections and walkthroughs (Dustin, Rashka et al. 1999; Jones 2000)

Quality Gates (Dustin, Rashka et al. 1999)

Defect Detection

Inspections and walkthroughs (Dustin, Rashka et al. 1999; Jones 2000)

Usability labs (Jones 2000)

Quality Gates (Dustin, Rashka et al. 1999)

Testing of product deliverables (Dustin, Rashka et al. 1999)

Designing for testability (Dustin, Rashka et al. 1999)

Use of automated test tools (Dustin, Rashka et al. 1999)

Unit testing (Dustin, Rashka et al. 1999; Jones 2000)

Integration testing (Dustin, Rashka et al. 1999; Jones 2000)

System testing (Dustin, Rashka et al. 1999; Jones 2000)

Functional testing (Jones 2000)

Acceptance testing (Dustin, Rashka et al. 1999; Jones 2000)

Following defined test process (Dustin, Rashka et al. 1999)

Risk assessment (Dustin, Rashka et al. 1999)

Strategic manual and automated test design (Dustin, Rashka et al. 1999)

Execution and management of automated tests (Dustin, Rashka et al. 1999)

Test verification method (Dustin, Rashka et al. 1999)

User involvement (Dustin, Rashka et al. 1999)

6
 D

is
cu

ss
io

n

81

Table 6-4 Software defect prevention and detection techniques (Jones 2000) (Dustin, Rashka et al. 1999)

The fact that this research only (some overlap to prevention however) covers the second part ‘Defect

Detection’ is evident from the table. To discover and solve even higher ratios of defects, the first

column needs to be taken into account as well. A note about efficient defect prevention and removal

methods per defect origin is in place here as well. See the table below:

Requirements
Defects

Design
Defects

Code
Defects

Document
Defects

Performance
Defects

Reviews/
Inspections

Fair EXCELLENT EXCELLENT GOOD Fair

Prototypes GOOD Fair Fair

Not
Applicable

Good

Testing
(all forms)

Poor Poor Good Fair EXCELLENT

Correctness
Proofs

Poor Poor Good Fair Poor

Table 6-5 Defect removal methods (Jones 1997)

Table 6-5 shows effectiveness of the different defect detection and removal methods. Best in class

effectiveness for a type of defect is marked by using CAPS and underline. Testing is awarded color

labels for its effectiveness. Red indicating poor to green indicating excellent performance. The table

clearly shows Reviews/Inspections as a useful defect removal practice next to Testing. Prototypes are

also quite useful for discovering requirement defects. These practices should thus be examined for

use at SME in a later research. Correctness proofs is handled later, for it delivers effectiveness values

equal or below Testing, but at the other hand they are easy to implement, for they incorporate static

testing (which do not even execute code) and can be automated almost in full. This holds many

possible fully automated test tools like FxCop and Findbugs and thus can easily extend the proposed

CIT best-practice implementation to attain quickly realizable benefits.

Final recommendation for future work is to apply a broader definition of software quality to steer

processes, not just to minimize defects. Also take into account the productivity ratio, for quality

always balances with costs. During this research several out-of-scope development process issues

were encountered that were out-of-bounds, but certainly worthy of further examining.

6
 D

is
cu

ss
io

n

82

REFERENCES
Abrahamsson, P., O. Salo, et al. (2002). "Agile software development methods: Review and Analysis."
Technical Research Centre of Finland, VTT Publications 478, from
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf.

Abrahamsson, P., J. Warsta, et al. (2003). New Directions on Agile Methods: A Comparative Analysis.
Proceedings of the Twenty-Fifth International Conference on Software Engineering: 244-254.

Ambler, S. W. (2002). Agile Modeling: Best Practices for the Unified Process and Extreme
Programming. New York, John Wiley & Sons.

Ambler, S. W. (2006). "Agile Testing Strategies." Architecture & Design, from
http://www.ddj.com/architect/196603549.

Bach, J. (1997). Test automation snake oil. 14th International Conference on Testing Computer
Software. Washington D.C., US Professional Development Institute.

Bach, J. (1998). "A framework for good enough testing." Computer 31(10): 124-126.

Baskerville, R., L. Levine, et al. (2001). "How Internet companies negotiate quality." Computer 34(5):
51-57.

Baskerville, R. and J. Pries-Heje (2001). Racing the E-bomb: How the Internet is redefining
information systems development methodology. Realigning research and practice in IS development.
B. Fitzgerald, N. Russo and J. DeGross. New York, Kluwer: 49-68.

Beck, K. (1999a). "Embracing change with extreme programming." Computer 32(10): 70-77.

Beck, K. (1999b). Extreme Programming Explained. Reading, MA, Addison-Wesley.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Reading, Addison-Wesley.

Beck, K. (2002). Test Driven Development: By Example. Reading, Addison-Wesley.

Boehm, B. W. (1988). "A Spiral Model of Software-Development and Enhancement." Computer 21(5):
61-72.

Coad, P., D. L. J., et al. (1999). Java Modeling in Color. Englewood Cliffs, NJ, Prentice Hall.

Cockburn, A. (1998). Surviving Object-Oriented Projects: A Manager's Guide. Longman, Addison-
Wesley.

Cockburn, A. (2000). Writing Effective Use Cases, The Crystal Collection for Software Professionals,
Addison-Wesley Professional.

Cockburn, A. (2002). Agile Software Development. Boston, Addison-Wesley.

Cockburn, A. and J. Highsmith (2001). "Agile software development: The people factor." Computer
34(11): 131-133.

Cockburn, A. and L. Williams (2000). The costs and benefits of pair programming. Proceedings of
eXreme Programming and Flexible Processes in Software Engineering. Cagliary: 223-243.

http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf
http://www.ddj.com/architect/196603549

6
 D

is
cu

ss
io

n

83

Compuware. (2006). "Continuous Integrated Testing: Delivering Apps With Confidence." Java
Retrieved 01-03-2008, 2008, from http://www.ddj.com/java/196601755.

Crispin, L. and T. House (2003). Testing Extreme Programming. Boston, MA, Addison-Wesley.

Cusumano, M. A. and D. B. Yoffie (1999). "Software development on Internet time." Computer
32(10): 60-69.

DSDMConsortium (1997). Dynamic Systems Development Method, version 3. Ashford, DSDM
Consortium.

Dustin, E., J. Rashka, et al. (1999). Automated Software Testing. Reading, Addison-Wesley.

Duvall, P. M. (2007). Continuous Integration: Improving Software Quality and Reducing Risk, Addison
Wesley.

Erdogmus, H., M. Morisio, et al. (2005). "On the effectiveness of the test-first approach to
programming." Ieee Transactions on Software Engineering 31(3): 226-237.

Fenton, N. E. and M. Neil (1999). "A critique of software defect prediction models." Ieee Transactions
on Software Engineering 25(5): 675-689.

Fewster, M. and D. Graham (1999). Software test automation : effective use of test execution tools.
Harlow, Addison-Wesley.

Flowers, J. (2006). "A recipe for build maintainability and reusability." from
http://jayflowers.com/joomla/index.php?option=com_content&task=view&id=26.

Fowler, M. (2006). "Continuous Integration." from
http://martinfowler.com/articles/continuousIntegration.html.

Fowler, M. and J. Highsmith (2001). "The Agile Manifesto." Software Development: 28-32.

Fowler, P. and S. Rifkin (1990). Software Engineering Process Group Guide. CMU/SEI-90-TR-24,
Carnegie Mellon University.

Gokhale, S. S. and K. S. Trivedi (1999). "A time/structure based software reliability model." Annals of
Software Engineering 8(1-4): 85-121.

Grenning, J. (2001). "Launcing Extreme Programming at a Process-Intensive Company." Ieee Software
18(3): 3-9.

Haines, S. (2008). "Continuous Integration and Performance Testing." Java.

Highsmith, J. (2000). Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. New York, Dorset House Publishing.

Hunt, A. and D. Thomas (2000). The Pragmatic Programmer, Addison-Wesley.

Janzen, D. and H. Saiedian (2005). "Test-driven development: Concepts, taxonomy, and future
direction." Computer 38(9): 43-50.

Jeffries, R. (1999). "eXtreme testing." Software Testing & Quality Engineering 1(2): 23-26.

http://www.ddj.com/java/196601755
http://jayflowers.com/joomla/index.php?option=com_content&task=view&id=26
http://martinfowler.com/articles/continuousIntegration.html

6
 D

is
cu

ss
io

n

84

Jones, C. (1997). Applied software measurement : assuring productivity and quality. 2nd ed. New
York, McGraw-Hill.

Jones, C. (2000). Software Assessments, Benchmarks, and Best Practices. Boston, Addison-Wesley.

Kan, S. H. (2003). Metrics and models in software quality engineering. 2nd ed. Boston, Addison-
Wesley.

Kan, S. H., V. R. Basili, et al. (1994). "Software Quality - An Overview From The Perspective of Total
Quality Management " IBM Systems Journal 33(1): 4-19.

Kaner, C. (1996). Negotiating testing resources: A collaborative approach. Ninth International
Software Quality Week Conference. San Fransisco.

Kaner, C. and W. P. Bond (2004). Software Engineering Metrics: What Do They Measure and How Do
We Know? 10th EEE International Software Metrics Symposium.

Koskela, L. (2008). Test driven : practical TDD and acceptance TDD for Java developers. Greenwich,
Manning.

Lindstrom, L. and R. Jeffries (2004). "Extreme programming and agile software development
methodologies." Information Systems Management 21(3): 41-52.

Lindvall, M., V. R. Basili, et al. (2002). "Proceedings of the Second XP Universe and First Agile Universe
Conference on Extreme Programming and Agile Methods." Lecture Notes in Computer Science 2418:
197-207.

Marick, B. (1997). Classic Testing Mistakes. Sixth International Conference on Software Testing,
Analysis, and Review.

Maximilien, E. M. and L. Williams (2003). Assessing test-driven development at IBM. Proceedings -
International Conference on Software Engineering.

McFeeley, B. (1996). IDEAL SM: A User's Guide for Software Process Improvement. Handbook
CMU/SEI- 96-HB-001. Pittsburgh, PE, Software Engineering Institute.

McMahon, J. (2003). "5 lessons from transitioning to eXtreme programming." Control Engineering
50(3): 59-65.

Nerur, S., R. Mahapatra, et al. (2005). "Challenges of Migrating to Agile Methodologies."
Communications of the ACM 48(5): 73-78.

Palmer, S. R. and J. M. Felsing (2002). A Practical Guide to Feature-Driven Development. Upper
Saddle River, Prentice-Hall.

Rainer, A. and T. Hall (2002). "Key success factors for implementing software process improvement: a
maturity-based analysis." Journal of Systems and Software 62(2): 71-84.

Schwaber, C. and R. Fichera. (2005). "Corporate IT leads the second wave of agile adoption." from
http://www.forrester.com/Research/Document/Excerpt/0,7211,38334,00.html.

Schwaber, K. (1995). SCRUM Development Process. OOPSLA'95 Workshop on Business Object Design
and Implementation, Springer-Verlag.

http://www.forrester.com/Research/Document/Excerpt/0,7211,38334,00.html

6
 D

is
cu

ss
io

n

85

Schwaber, K. and M. Beedle (2002). Agile Software Development with Scrum. Upper Saddle River, NJ,
Prentice-Hall.

Schwartz, R. B. and M. C. Russo (2004). "How to quickly find articles in the top IS journals."
Communications of the Acm 47(2): 98-101.

Sogeti (2008). TMAP NEXT: Overzicht Toegepaste Testvormen. Vianen, Netherlands, Sogeti
Netherlands.

Stapleton, J. (1997). Dynamic systems development method - The method in practice, Addison-
Wesley.

van Solingen, R. (2004). "Measuring the ROI of software process improvement." Ieee Software 21(3):
32-+.

Veevers, A. and A. C. Marshall (1994). "A Relationship between Software Coverage Metrics and
Reliability." Journal of Software Testing, Verification and Reliability 4: 3-8.

Williams, L., E. M. Maximilien, et al. (2003). Test-Driven Development as a Defect-Reduction Practice.
Ieee International Symposium on Software Reliability Engineering. Denver: 34-45.

Wood, A. (1996). "Predicting software reliability." Computer 29(11): 69-77.

6
 D

is
cu

ss
io

n

86

APPENDICES

A Semi-open interview format
This Appendix covers the format used at the semi-open Interviews. The original format is written in
Dutch, but was translated to English to suit this report. Questions are dived into four categories: (1)
interviewee characteristics/identifiers, (2) test process descriptives and (3) test process performance.

Employee personal details
Name
Function
Business unit
Years employed
Years in software development

Current testing process descriptives
Which (partial) activities are involved at testing?
How are activities divided into sub-activities i.e. over employees?
What sorts of tests are performed?
Which methods & tools are used to aid these tests?
What goes well in testing?
What can be improved?
What would be your ideal testing method?
What do you miss in testing?
What problems occur in testing?

Current testing process performance
What performance factors are being measured?
Do you miss any performance factors?
How does the collection of testing performance data take place?
What difficulties occur during measurement?
How was/where the current measurement process/factors realized?
And Why?
What is current performance on these (or to be developed) factors?

6
 D

is
cu

ss
io

n

87

B Survey format
This Appendix lists the format for the used online survey ‘Testing at SME’. The original is in Dutch,

but was translated to English to suit this report.

N.B. questions 6 – 16 held a text field for open comments, but where removed here for typographic

reasons.

Testing at SME

Introduction

Dear SME-ist,

Welcome to my survey on testing at SME.

This survey tries to determine how testing at SME performs and tries to determine where
improvements can / should be made to make SME' software even better.
I expect the survey to take about 15 minutes of your time.
At every question there’s a comment box, so if you need to state something specific about a
particular question, please fill this in.
Finally: All questions must be filled out as being applicable to the SME company (eg: Hub) at which
you work.

Questions / comments / etc. do not hesitate in emailing me! (yoni.meijberg@SME.nl)
With your help SME will improve for sure!

Success in completing the questionnaire and thanks in advance.

Yoni

Identification

1. At which 'SME' do you work?

 Hub

 Energy

 Automobile

 Transport

2. What is your (main) function?
(Note if you do not belong to any of these functions, then this survey is not suitable for you
and I ask you to close this survey.)

Developer -
Junior

Developer -
Senior

Analyst -
Junior

Analyst -
Senior

Project
Manager

3. How many years are you employed by SME? (rounded up to half years with 1 decimal;
separated by one point. example: 2.5)

6
 D

is
cu

ss
io

n

88

 Year(s)

Test types, regression & automation

4. How many weeks does the average application release span?

 Weeks

5. How often are the following tests applied?
(Please keep the release span of question 3 to mind)

 Daily Weekly Monthly
Per

release
(Almost)

Never

Unit
Tests the smallest possible software component or
module. Every unit of the software is tested to
verify whether the detailed unit design has been
implemented correctly.

Integration
Checks for errors in interfaces + interactions
between integrated components. Progressively
increasing components of the architectural design
are integrated and tested until the software
functions as a system.

System
Tests a completely integrated system, to verify
whether it meets demands.

System Integration
Checks whether the system is properly integrated
with external or third party systems.

Functional
Tests at every level (class, module, interface or
system) for functionality as stated in requirements
specifications.

Acceptance
Testing by end user / customer / analyst to verify
whether or not a release is accepted for production
use.

6. How important are previously mentioned tests for project success?

Completely

unimportant
Quite

unimportant
Neutral

Quite
important

Very
important

Unit

6
 D

is
cu

ss
io

n

89

Integration

System

System
Integration

Functional

Acceptance

7. To what extent is regression (after a code change rerun all earlier designed tests) applied at
previously mentioned tests?

 Per check-in Daily Weekly Monthly Per release (Almost) Never

Unit

Integration

System

System Integration

Functional

Acceptance

8. How important is regression to previously mentioned testing for project success?

Completely

unimportant
Quite

unimportant
Neutral

Quite
important

Very
important

Unit

Integration

System

System
Integration

Functional

Acceptance

9. To what extent are previously mentioned tests automated?

 0-20% 20-40% 40-60% 60-80% 80-100%

Unit

Integration

System

System Integration

Functional

Acceptance

6
 D

is
cu

ss
io

n

90

10. How important is automation at previously mentioned tests for project success?

Completely

unimportant
Quite

unimportant
Neutral

Quite
important

Very
important

Unit

Integration

System

System
Integration

Functional

Acceptance

Knowledge & resources

11. What is the knowledge level of developers on to the following tests?

 Absent Limited Adequate Ample Perfect

Unit

Integration

System

System Integration

Functional

Acceptance

12. What is the knowledge level of customers on to the following tests?

 Absent Limited Adequate Ample Perfect

Functional

Acceptance

13. To what extent are the following test resources available?

 Absent Limited Adequate Ample Perfect

Test scenarios

Basis testsets

Dedicated test hardware

Continuous build server (with auto check-in)

Easily maintained test tools

6
 D

is
cu

ss
io

n

91

14. How important is the availability of the following test resources to project success?

Completely

unimportant
Quite

unimportant
Neutral

Quite
important

Very
important

Test scenarios

Basis testsets

Dedicated test hardware

Continuous build server
(with auto check-in)

Easily maintained test
tools

Statements

15. To what extent do you agree to the following statements?

Completely

disagree
Disagree Neutral Agree

Completely
agree

Customers need to write test plans on
their own

Customers test properly

Customers need support during testing

Customers need to test at SME
internally

Customers are available for business
context coding questions

Customers are involved in the testing
process

The current development planning
guarantees adequate testing (in
practice)

Testen occurs ad-hoc

Testing is skipped / severely shortened
when developing deadlines aren’t met

Test execution is stimulated by project
managers

Feedback in own code (for instance as
bugs) arrives soon enough

Testing receives enough attention

6
 D

is
cu

ss
io

n

92

I am certain of the effects of inserting
new code into the application base

The amount of testing and quality
hereof is highly dependent on the
developer personality

Attention for testing degrades as
development progresses

Influence of code changes on system
functioning is underestimated

Testing is executed without a clear
strategy

Code is written to be testable

Effects on the rest of the application are
unknown when refactoring

Current unit tests test too large chunks
of code simultaneously

Less time required in bug-fixing by
spending more time at testing nets less
development time

I trust bug-freeness of currently running
applications

When working with live code,
considerately more tests are executed

Acceptance testing forms an ample
viewing point for application
completeness.

Wrap-up

16. What grade would you like to award the current testing process? (integer; 1 = worst - 10 =
best)

Please fill in the principal reason for the realization of this grade.

17. Open space: if you’ve got things you want to share or mention about the current testing at
SME, things that please or bother you or even possible improvements, let them know here.

N.B. All information is handled confidentially and results will be published anonymously.

6
 D

is
cu

ss
io

n

93

18. Would you like to be informed about the results of this survey?

 Yes

 No

19. Are you available for possible questions in response of your answers?

 Ja

 Nee

	Management Summary
	Preface
	Table of Contents
	Contents
	Introduction
	SME, an intermediate-sized SME
	Case description
	Motive: get testing up to speed
	Sample subset Energy & Hub
	Research focus

	Problem identification
	Preliminary Issues
	Main question: improve software quality by proper testing
	Sub questions: current and target situation

	Methodology
	Research phasing
	Preliminary literature review
	Semi-open interviews
	Interviews side-product: sample test reports

	Survey
	Format realization cycles
	Questioning and scales
	Result analysis method and classification
	Sampling, response rate and sample validity

	Structured literature study
	Agile methodologies study
	Results agile methodologies study: the path to TDD
	Nine agile methods
	Iterative testing
	Empirically only XP and SCRUM are covered

	Metrics and CIT to guide project management

	Current Situation
	Overall picture: testing in trouble
	Responsibilities: too informal
	Inadequate knowledge / competence
	Low priority
	Partial lack of resources
	Quality management bears subjectivism
	Limited customers guidance

	Types of testing
	No overall methodology, limited TMAP NEXT application
	Realization current test process

	Current Performance
	Testing performance: ordinal ‘Unsure’ at best
	Low execution levels throughout test types
	Test types
	Condensed test and principle usage
	Complete test and principle usage
	Test use far too limited for perceived relevance
	Regression? What regression?
	Regression lacks behind test frequencies
	Automation zero to none accompanied by relevance neutrality
	Developer knowledge level lacking, customers‘ level varies
	Test resources important yet unavailable
	Various statements

	Qualitative additions of overall testing process

	Best Practices
	Testing paradigm shift: XP’s Test-Driven Development
	XP TDD in short
	XP testing: various benefits

	Beyond tools: Continuous Integrated Testing
	Continuous Integration explained
	The CIT approach
	A variety of benefits from CIT
	Remarks on automated testing

	Metrics: A new set of performance indicators
	Measurements of test execution levels
	Code Coverage
	Test Progress Curve (Planned, Attempted, Actual)

	Indirect measurements of code quality through defect analysis
	Testing Defect Arrivals over Time
	Testing Defect Backlog over Time

	Overall performance of testing
	Defect Detection Percentage

	Special case: When to stop testing?

	Setting a testing atmosphere
	Customers: high(er) involvement
	Developers: diffuse knowledge

	Discussion
	Conclusion: testing severely underexposed
	Recommendations
	Best-practice adoption, not which but in what order
	Stepwise improvement via three consecutive best-practices

	Issues and main question revisited: improvements throughout
	All issues covered
	Software quality sure to improve

	Limitations and future work
	Limitations
	Future work

	References
	Appendices
	Semi-open interview format
	Survey format

